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ABSTRACT

A  method  to  tighten  the  cloud  screening  thresholds  based  on  local  conditions  is  used  to  provide  more  stringent
schemes for Orbiting Carbon Observatory-2 (OCO-2) cloud screening algorithms. Cloud screening strategies are essential
to remove scenes with significant cloud and/or aerosol contamination from OCO-2 observations, which helps to save on the
data processing cost and ensure high quality retrievals of the column-averaged CO2 dry air mole fraction (XCO2). Based on
the  radiance  measurements  in  the  0.76  μm  O2A  band,  1.61  μm  (weak),  and  2.06  μm  (strong)  CO2 bands,  the  current
combination  of  the  A-Band  Preprocessor  (ABP)  algorithm  and  Iterative  Maximum  A  Posteriori  (IMAP)  Differential
Optical Absorption Spectroscopy (DOAS) Preprocessor (IDP) algorithm passes around 20%–25% of all soundings, which
means that  some contaminated scenes also pass  the screening process.  In this  work,  three independent  pairs  of  threshold
parameters  used in  the  ABP and IDP algorithms are  sufficiently  tuned until  the  overall  pass  rate  is  close  to  the  monthly
clear-sky fraction from the MODIS cloud mask. The tightened thresholds are applied to observations over land surfaces in
Europe  and  Japan  in  2016.  The  results  show  improvement  of  agreement  and  positive  predictive  value  compared  to  the
collocated  MODIS  cloud  mask,  especially  in  summer  and  fall.  In  addition,  analysis  indicates  that  XCO2 retrievals  with
more  stringent  thresholds  are  in  closer  agreement  with  measurements  from  collocated  Total  Carbon  Column  Observing
Network (TCCON) sites.
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Article Highlights:

•  A method to tighten the cloud screening thresholds based on local conditions is used to provide more stringent schemes
for OCO-2 cloud screening algorithms.
•  The optimized scheme reduces the difference between TCCON XCO retrievals and OCO-2 measurements from 3.23 ±
2.25 ppm to 2.11 ± 1.76 ppm.
•  Adjustment  is  applied  according  to  average  monthly  clear-sky  fractions,  which  helps  incorporate  seasonal  variation  in
Europe and Japan.

 
 

1.    Introduction

The  Orbiting  Carbon  Observatory-2  (OCO-2)  satellite
provides quantification of global sources and sinks of atmo-

spheric carbon dioxide (CO2) based on high spatial and tem-
poral  sampling  of  reflected  solar  radiation  (Crisp  et  al.,
2004).  The  OCO-2  mission  helps  to  solve  the  carbon
budgets on sub-continental or regional spatial scales by deliv-
ering space-based column-averaged CO2 dry air  mole frac-
tion (XCO2)  observations over  land and ocean,  which can-
not  be  solved  solely  based  on  networks  of  in-situ  CO2
sensors (Gurney et al., 2002; Chevallier et al., 2007; Baker
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et al., 2010). However, the utility of remotely sensed CO2 con-
centrations from space has stringent requirements on the preci-
sion [in the range of 1−10 ppm (0.3%–3.0%) and without sig-
nificant biases] (Rayner and O'Brien, 2001), which became
the  key  consideration  for  developing  new  instruments  and
algorithms.

In the early stage of space-borne CO2 observation, CO2

measurements  were  retrieved  using  a  thermal-infrared  (IR)
algorithm  from  instruments  such  as  the  High  Resolution
Infrared Sounder 2 (HIRS-2) aboard the NOAA 10 satellite,
the Atmospheric Infrared Sounder (AIRS) on the Aqua satel-
lite,  and the Infrared Atmospheric Sounding Interferometer
(IASI)  on  the  Meteorological  Operational  Satellite
(METOP)  (Crevoisier  et  al.,  2004, 2009; Engelen  and
McNally, 2005). These measurements contribute to the estim-
ation of global CO2 sources and sinks, but lack sensitivity to
near-surface CO2 due to the usage of thermal-IR data (Cheval-
lier  et  al.,  2005a, b).  Shortwave  infrared  (SWIR)  observa-
tions  made  by  the  Scanning  Imaging  Absorption  Spectro-
meter for Atmospheric Chartography (SCIAMACHY) instru-
ment  on  the  Environmental  Satellite  (ENVISAT),  on  the
other hand, can retrieve CO2 measurements with high near-
surface sensitivity (Burrows et al., 1995; Bovensmann et al.,
1999).  However,  it  is  also  noted  that  there  are  systematic
errors  in  SCIAMACHY-observed  CO2 due  to  aerosols
(Houweling  et  al.,  2005).  Therefore,  recent  instruments
have used combined spectral bands to improve the overall per-
formance. For example, the Fourier transform spectrometer
(FTS) operating on the Greenhouse-gases Observing Satel-
lite  (GOSAT)  has  three  SWIR  bands  and  one  thermal-IR
band; it also uses a cloud and aerosol imager to constrain scat-
tering  interferences  (Kuze  et  al.,  2009; Yoshida  et  al.,
2011).

The original OCO instrument was designed to measure
the SWIR absorption bands of CO2 at 1.61 and 2.06 μm, as
well as the O2A-band at 0.765 μm. After the launch failure
in  2009,  a  re-flight  mission  was  initiated  using  the  same
instrument design, which became known as the OCO-2. The
algorithm developed  for  the  retrieval  of  XCO2 from OCO,
OCO-2  and  new  OCO-3  observations  has  been  continu-
ously  refined,  making  it  one  of  the  most  advanced  and
widely used algorithms for CO2 study (Connor et al., 2008;
O'Dell et al.,  2012; Taylor et al.,  2016). The algorithm can
adapt to analyze observations from other instruments, includ-
ing  SCIAMACHY,  GOSAT,  and  the  ground-based  FTS
(Bösch et al., 2006). Therefore, further optimization and eval-
uation  of  the  algorithm  can  benefit  the  refinement  of  cur-
rent  retrievals,  and  also  help  provide  more  information  for
testing and validation.

Collecting  approximately  1  million  soundings  on  a
daily  basis,  reliable  cloud  screening  algorithms  are  essen-
tial for both computational efficiency and quality assurance.
Currently, the level 2 retrieval algorithm of OCO-2 utilizes
a combination of results from two independent cloud screen-
ing methods—the A-Band Preprocessor (ABP) method and
the  Iterative  Maximum  A  Posteriori  (IMAP)  Differential
Optical  Absorption  Spectroscopy  (DOAS)  Preprocessor

(IDP) method (Mandrake et al., 2013).
The ABP algorithm, developed by Colorado State Uni-

versity, is used for rapid screening of OCO-2 data for cloud
or aerosol contamination. The ABP algorithm uses solar radi-
ance  spectral  data  in  the  0.76  μm O2A band  and  ECMWF
model. It employs a fast Bayesian retrieval to estimate sur-
face  pressure  and surface  albedo,  and minimizes  the  resid-
ual  of  a  simulated  and  measured  spectrum  to  get  a  good-
ness-of-fit  (χ2)  statistic.  The  simulated  spectra  are  calcu-
lated  assuming  clear-sky  conditions  with  only  molecular
Rayleigh scattering present. The χ2 of the residuals between
the  measured  and  simulated  spectra  is  calculated  as  a  cost
function using Gauss–Newton iteration and five parameters:
surface pressure, the offset to an assumed temperature pro-
file,  surface  albedos  at  the  band beginning and end points,
and  a  wavelength  (dispersion)  multiplier  (O’Dell  and
Taylor, 2014). Scenes that violate the condition, i.e., having
clouds or aerosols, will generally yield large spectral resid-
uals and thus can be identified easily.

The IDP algorithm, on the other hand, uses solar spec-
tra to retrieve the vertical column density (VCD) of the gas
molecules (CO2 and H2O) in the 1.61 μm (weak) and 2.06 μm
(strong) CO2 bands (Frankenberg et al., 2005). The ratio of
the  VCD  between  the  weak  band  and  the  strong  band
should approach unity in the absence of clouds or aerosols,
which in reality is centered around 0.99 due to imperfect spec-
troscopy  (Mandrake  et  al.,  2013).  Scenes  that  apparently
diverge from unity are affected by clouds or aerosols, which
have the ability to significantly alter  the distribution of  the
light paths, thus biasing the retrieved column properties, sur-
face  reflectance  and  other  parameters  by  up  to  a  few  per-
cent (Rayner and O'Brien, 2001).

As  preprocessors,  both  methods  aim  to  efficiently
identify  scenes,  or  soundings,  containing  significant
amounts of clouds and/or aerosols. However, some contamin-
ated  scenes  might  pass  the  filter  due  to  the  loosely  set
thresholds (Taylor et al., 2016). Cloud or aerosol contamina-
tion can lead to failure in accurately retrieving XCO2 and, con-
sequently,  influence  the  identification  of  regional  sources
and sinks (Miller et al., 2007; Connor et al., 2016; Wunch et
al.,  2017).  If  the  measured  radiances  are  significantly
impacted  by  scattering  due  to  clouds  and  aerosols,  XCO2

retrievals  are  unlikely  to  converge;  even  if  the  impacts  are
rather modest,  i.e.,  with a total  optical  depth (TOD) ≤ 0.3,
they can still  introduce biases in the XCO2 retrievals (Butz
et al., 2011; O'Dell et al., 2012; Guerlet et al., 2013). Previ-
ous studies suggest that both the ABP and IDP methods are
reasonably  effective  at  identifying  high  clouds  (O'Dell  et
al., 2012; Taylor et al., 2012, 2016). In addition, the combina-
tion of  the  two methods  could  reduce the  misidentification
of low clouds by one third (O'Dell et al., 2012; Taylor et al.,
2012, 2016). However, comparison with collocated profiles
measured by the Cloud-Aerosol Lidar with Orthogonal Polar-
ization  (CALIOP)  shows  that  more  than  40%  of  the  low
clouds with TOD > 1 at 532 nm might pass both screeners
(Taylor et al., 2016).
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In  this  work,  a  method  to  tighten  the  cloud  screening
thresholds based on local conditions is used to provide more
stringent  schemes  for  OCO-2  cloud  screening  algorithms.
The method aims to provide fast adaptation to regional condi-
tions,  reducing  the  inflation  in  the  operational  algorithms
caused  by  loose  thresholds  setting  and  unified  application
over  the  globe.  The  same  inputs  as  the  ABP  and  IDP
algorithms are utilized (listed in the data section) to provide
an  independent  set  of  cloud  detection  results.  One  year  of
measurements in 2016 (from 1 December 2015 to 30 Novem-
ber  2016)  collected  over  Europe  are  used  for  the  study.
OCO-2 cloud screening results are compared directly to the
cloud  mask  from  collocated  Moderate  Resolution  Imaging
Spectrometer (MODIS) products. The threshold parameters
currently  used  by  the  OCO-2 algorithm are  tuned until  the
overall passing rate is decreased from 20%–25% of all sound-
ings to a close match of the clear-sky fraction observed by
MODIS.  By  design,  the  narrowed  range  of  thresholds
increases  the  agreement  with  MODIS  cloud  screening  res-
ults, thereby increasing the quality assurance of XCO2 retriev-
als,  at  a cost of a certain decrease in the number of sound-
ings passing the screeners.

This paper is organized as follows. Section 2 provides a
brief background on the cloud screening algorithm of OCO-
2,  and a list  of  datasets  from different  satellite  sensors  and
ground-based  sites  used  in  this  work.  Section  3  describes
the procedure for comparing collocated OCO-2 and MODIS
measurements,  optimizing  the  threshold  parameters,  and
adapting  to  monthly  variations.  Section  4  presents  the  res-
ults and analysis of re-screened OCO-2 measurements, includ-

ing  comparison  with  the  MODIS  cloud  mask,  as  well  as
XCO2 retrievals from Total Carbon Column Observing Net-
work (TCCON) sites. The optimization scheme is also con-
firmed with one year of data in Japan. Section 5 concludes
the paper.

2.    Sensors and data

Figure 1 shows a conceptual diagram of this work. The
flowchart is detailed in the following sections. In summary,
a  one-year  period  of  OCO-2  data  from  December  2015  to
November 2016 is used in this study. The dataset is gener-
ally referred to as a 2016 dataset, as the December from the
previous year is only included for a complete winter season.
The data cover a selected area in Europe, consisting of land
within  10°–50°W  longitude  and  30°–60°N  latitude.  The
area  was  chosen  for  its  relatively  high  density  of  TCCON
sites, making it more convenient for collocated comparison.
Observations  over  water  are  not  considered  in  this  work,
since  validation  against  measurements  from  TCCON  sites
would  be  difficult.  We  combined  observations  made  in
Nadir  mode  and  Glint  mode  because  they  use  the  same
thresholds  over  land.  Focused  analysis  is  made  based  on
two monthly datasets, in January and July, which lead to con-
figuration of trends between threshold parameters and cloud
screening results, further discussed in section 3.

2.1.    OCO-2

The OCO-2 satellite carries a single instrument incorpor-
ating three co-bore sighted, long-slit imaging grating spectro-

 

 

Fig. 1. Conceptual diagram of the proposed optimization scheme of the OCO-
2 cloud screening algorithm.
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meters  optimized  for  the  O2A  band  at  0.765  μm  and  the
CO2 bands at 1.61 and 2.06 μm (Crisp et al., 2004). Flying
in a 705-km sun-synchronous polar orbit at a repeat cycle of
16  days,  the  footprint  of  OCO-2  has  a  resolution  of  about
1.3 km across-track and 2.3 km along-track. OCO-2 is a mem-
ber of the A-Train constellation, which allows it to collect syn-
ergistic measurements with other members in close proxim-
ity.

The  OCO-2  instrument  functions  on  the  daylight  side
of the orbit, operating in either Nadir, Glint or Target mode.
In Nadir mode, the instrument provides the highest spatial res-
olution  by  looking  straight  down  to  Earth  and  collecting
data  along the ground track.  In  Glint  mode,  the  instrument
is pointed toward the bright glint spot where solar radiation
is specularly reflected off the surface. The primary purpose
of  Glint  mode  is  to  provide  higher  SNR  over  the  ocean,
which could be 100 times higher than observations in Nadir
mode at high latitudes. The Target mode is mainly used for
calibration over specific ground sites, and therefore it is not
discussed further in this work.

The  OCO-2  products  used  here  include  Level  2  spa-
tially  ordered  geolocated  retrievals  screened  using  the  A-
band  Preprocessor  (OCO2_L2_ABand),  Level  2  spatially
ordered  geolocated  retrievals  screened  using  the  IMAP-
DOAS  Preprocessor  (OCO2_L2_IMAPDOAS),  and  Level
2 geolocated XCO2 retrievals results (OCO2_L2_Standard)
(Gunson  and  Eldering,  2014a, b, c).  All  the  products  are
from  Version  8,  retrospective  processing  (8r).  The  data
from OCO-2 are available at https://daac.gsfc.nasa.gov/.

A brief introduction is given below for the specific data-
set utilized in the work.

2.1.1.    OCO2_L2_ABand

From  A-band  products,  primary  screening  parameters
such as surface pressure, surface albedo, and reduced χ2 val-
ues near 0.765 μm are used for comparison with collocated
MODIS products and optimization of threshold parameters.
The  surface  pressure  parameter  gives  the  difference
between the surface pressure estimated by the ECMWF and
that retrieved from satellite observation. It is calculated as 

∆ps = ps− ps,a , (1)

where s indicates the surface and a indicates a model priori
value.  More  specifically,  the  ECMWF  estimate  is  a  linear
interpolation in time and space of modeled surface pressure
with a 0.25° spatial and 3-h temporal resolution. Correction
for an offset from path length dependence due to imperfect
spectroscopy  used  in  the  retrieval  algorithm  is  also  taken
into account. The surface albedo parameter is the average of
retrieved  surface  albedos  at  0.755  μm  and  0.785  μm.  The
reduced χ2 value  is  a  goodness-of-fit  parameter  of  the  fast
retrievals. The results of filtering with these three paramet-
ers are summarized into a cloud flag product.

2.1.2.    OCO2_L2_IMAPDOAS

From  this  dataset,  independently  retrieved  VCDs  of

CO2 and H2O in the strong CO2 band and weak CO2 band
are  used.  The  ratios  of  measured  values  in  the  weak  and
strong band are the primary parameters to categorize scenes
as cloudy or clear.

2.1.3.    OCO2_L2_Standard

The  retrieved  XCO2 and  associated  uncertainties  are
used  for  comparison  with  measurements  at  TCCON  sta-
tions.

2.2.    MODIS

The  MODIS  instrument  provides  calibrated  radiances
in 36 spectral bands ranging in wavelength from 0.4 μm to
14.4  μm,  which  are  used  to  infer  many  key  properties  of
clouds  and  aerosols  (Kaufman  et  al.,  2002; Minnis  et  al.,
2008). The instrument aboard the Aqua satellite, also a mem-
ber of the A-Train, provides collocated measurements with
OCO-2.  The  MODIS  products  used  include  MYD03,
MYD06_L2, and MYD08. MYD03 provides latitude and lon-
gitude  at  a  1  km  resolution  for  collocating  with  OCO-2.
MYD06  provides  the  cloud  mask  and  other  cloud  proper-
ties  used  for  analysis.  MYD08  provides  the  monthly  aver-
aged  cloud  fraction  at  a  0.5°  ×  0.5°  resolution.  It  is  noted
that  the  comparisons  in  this  study  are  in  reference  to
MODIS as truth.  This assumption could be affected by the
uncertainty of MODIS cloud screening products, which is a
function  of  instrument  noise  in  the  channels  and  the  mag-
nitude of the correction that is necessary due to surface spec-
tral  radiative  properties,  as  well  as  atmospheric  moisture
and/or aerosol reflection contributions (Minnis et al., 2008).
The  data  from  MODIS  are  available  at https://ladsweb.
modaps.eosdis.nasa.gov/.

2.3.    TCCON

TCCON is a network of ground-based FTSs recording
near-IR  direct  solar  spectra  (Wunch  et  al.,  2011, 2017).
TCCON data are widely used as the most accurate and pre-
cise  retrieval  of  column-averaged abundance of  CO2,  CH4,
H2O and other  trace  gases,  providing a  validation resource
for the OCO, SCIAMACHY, and GOSAT projects (Morino
et al., 2011; Reuter et al., 2011; Thompson et al., 2012).

Data from six TCCON sites in Europe, including Bialys-
tok  (53.23°N,  23.025°E),  Bremen  (53.10°N,  8.85°E),
Garmisch (47.48°N, 11.06°E), Karlsruhe (49.10°N, 8.44°E),
Orleans (47.97°N, 2.113°E), and Paris (48.846°N, 2.356°E),
are  utilized  in  this  work.  In  2016,  these  sites  collected  68
590  measurements  in  total,  covering  324  days  in  the  year.
Most  of  these  measurements  were  made  in  summer
(June–July–August),  while  fewest  measurements  were
made  during  winter  (December–January–February),  likely
due to the high cloud fraction, surface snow cover, and lim-
ited sunlight hours.

To  compare  original  and  re-screened  OCO-2  XCO2

retrievals  with  TCCON records,  temporal  and spatial  aver-
aging  is  necessary  (Fig.  2).  The  average  of  OCO-2  XCO2

retrievals within a 200 km radius from the specific site was
compared  to  the  daily  average  of  XCO2 measured  by  that
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TCCON site. The range is chosen to provide sufficient meas-
urements for comparison, yet can be assumed to have relat-
ively constant XCO2 within the range. A similar range was
applied in Liang et al. (2017). In total, 143 comparison pairs
were made, covering 111 days in the one-year period.

In  addition,  three  sites  in  Japan—Rikubetsu  (43.46°N,
143.77°E),  Saga  (33.24°N,  130.29°E),  and  Tsukuba
(36.05°N, 140.12°E)—are used for validation of the optim-
ized cloud screening scheme.

3.    Method

3.1.    OCO-2 cloud screening method

The ABP and IDP methods of OCO-2 provide two sets
of independent cloud screening. Details of the methods are
stated in the algorithm theoretical basis documents (Franken-
berg, 2014; O’Dell and Taylor, 2014). The principles of the
two methods are similar: since the presence of clouds and aer-
osols causes scattering and modifies the optical path length,
there  should  be  apparent  differences  between modeled  and
measured results assuming clear-sky conditions (with no scat-
tering, or molecular Rayleigh scattering only) (Frankenberg
et al., 2005). Following this principle, the cloud screening cri-

teria for each method are reiterated briefly here for the con-
venience of readers.

For the ABP method, three thresholds are set  to test  if
the  scene  meets  the  clear-sky  conditions:  (1)  the  threshold
for  surface  pressure  as  explained  in  section  2;  (2)  the
threshold  for  the  average  of  retrieved  surface  albedos  at
0.755 μm and 0.785 μm; (3) the threshold for the reduced χ2

value.  If  either  one  of  the  tested  parameters  is  above  the
threshold  value,  the  scene  is  classified  as  cloudy.  These
thresholds could be set to different values for different opera-
tion  modes,  surface  types  and  other  observational  condi-
tions.

For  the  IDP  method,  thresholds  for  center  and  half-
width  (HW)  values  are  set  for  the  ratio  calculated  as  the
VCD of CO2 in the weak CO2 band divided by the VCD in
the strong CO2 band. This ratio is denoted as RCO2 in the fol-
lowing  section.  Similarly,  the  ratio  between  the  VCD  of
H2O in the two bands is denoted as RH2O.

3.2.    Hybrid MODIS mask and collocation method

To  assign  a  MODIS  reference  state  for  each  OCO-2
sounding,  considering  OCO-2  products  are  provided  at  a
1.3 km × 2.3 km resolution, and MODIS products at 1 km ×
1  km,  they  need  to  be  merged  first  for  further  analysis.
Here, we adopt the procedure first described in Taylor et al.
(2012) for  comparing  OCO-2  ABP  and  IDP  cloud  screen-
ing  results  to  the  MODIS  cloud  mask  hybrid  with  cirrus
reflectance. For each OCO-2 sounding, the reference state is
determined by averaging MODIS pixels with a center latit-
ude  and  longitude  less  than  2  km away from the  center  of
that sounding. If none of the selected MODIS pixels for an
OCO-2  sounding  is  marked  as  confident  or  probably
cloudy, and all cirrus reflectance R ≤ 0.01, the scene is classi-
fied as clear.  Otherwise, the scene is classified cloudy. For
simplicity, flags indicating confident or probably cloudy are
interpreted as cloudy.

3.3.    Contingency table analysis

A  contingency  table  analysis  provides  compact  sum-
mary statistics for comparing large predictive datasets. It is
performed to compare the cloud screening results  from the
OCO-2  ABP  and  IDP  methods  and  hybrid  MODIS  cloud
mask following the terms and procedure given in Taylor et
al.  (2012),  which  provides  compact  summary  statistics  for
comparing large predictive datasets. Like in Taylor’s work,
the  results  from  MODIS  are  referred  to  as  truth  in  this
study. Therefore, the comparison at each scene can be classi-
fied  as  one  of  four  categories:  true  positive  (TP)  for  both
OCO-2  and  MODIS  indicates  a  clear  scene;  true  negative
(TN) for  both  indicates  a  cloudy scene;  false  positive  (FP)
for MODIS indicates clear but OCO-2 indicates cloudy; and
false negative (FN) for MODIS indicates cloudy but OCO-2
indicates clear. The rate of each category is denoted as true
positive  rate  (TPR),  false  negative  rate  (FNR),  false  posit-
ive  rate  (FPR),  and  true  negative  rate  (TNR),  respectively.
According to the contingency table analysis, summary statist-
ics for each category are calculated as follows: 

 

Fig.  2.  Selected  area  in  Europe  and  Japan  (land  inside  green
box)  for  comparison  between  OCO-2  and  the  MODIS  cloud
mask,  as  well  as  collocating  ranges  (red  circles)  for  OCO-2
and TCCON XCO2 retrievals. The orange lines show examples
of OCO-2 orbits passing over nearby TCCON sites.
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TPR = NTP/Nclear ,

FNR = NFN/Nclear ,

FPR = NFP/Ncloud ,

TNR = NTN/Ncloud , (2)

where N is  the  total  number  of  collocated  soundings  for
each category, and also for clear scenes and cloud scenes.

Based on these summary statistics, three diagnostic vari-
ables are calculated as follows: 

THR = (NTP+NFP)/Ntotal ,

AGR = (NTP+NTN)/Ntotal ,

PPV = NTP/ (NTP+NFP) , (3)

where Ntotal is the total number of all collocated soundings.
By  design,  the  throughput  (THR)  gives  the  fraction  of
scenes that pass the OCO-2 cloud screening algorithms, i.e.,
identified as clear. The agreement (AGR) gives the fraction
of  scenes  that  are  correctly  classified  by  the  algorithms,
either as clear or cloudy, relative to the collocated MODIS res-
ults.  The positive predictive value (PPV) gives the fraction
of clear scenes predicted by MODIS that are also predicted
clear by the OCO-2 algorithms.

4.    Results

4.1.    Tightening  of  the  cloud  screening  algorithm
thresholds

To optimize the threshold parameters for cloud screen-
ing with results from the contingency table analysis, we ana-
lyzed the variation of summary statistics and diagnostic vari-
ables  independently  with  the  OCO-2  measurements  and
MODIS reference state in January and July 2016. The colloc-
ated  cloud  screening  dataset  in  January  is  composed  of  71
orbits,  with  311  500  soundings  passing  over  the  selected
region  in  Europe.  The  collocated  dataset  in  July  is  com-
posed of 72 orbits, and a total of 304 438 soundings.

Figure 3 shows the changes of diagnostic values, through-
put, agreement, and PPV, in response to altering cloud screen-
ing thresholds in a chosen range. Based on the July dataset,
the trend of these changes gives a way to evaluate the influ-
ence of each threshold value, including the surface pressure
difference and χ2 scale factor (SF) for the ABP method, and
center  value  and  HW  of  RCO2 and  RH2O  for  the  IDP
method.  Because  the  limit  of χ2 is  dynamically  calculated
for each sounding, a multiplicative SF is used to evaluate all
soundings.  For  retrieved  surface  albedos,  the  threshold  is
adopted from the current OCO-2 parameter and therefore its
influence is not examined in this study.

Based  on  the  trend  shown  in Fig.  3,  we  first  determ-
ined  Δps and  HW  since  the  figure  indicates  they  have  a
stronger  influence  over  the  changes  of  the  outcome,  and
then we determined the other parameter for each pair (χ2 SF
or  center  value,  respectively),  noting  that  the  first  determ-
ined  parameter  would  be  more  crucial.  The  six  major
threshold  parameters  are  adjusted  back  and  forth,  until  the
throughput of the combined results from the ABP and IDP

methods  are  closely  matched  with  the  average  monthly
clear-sky fraction in the region from MYD08.

In general, a set of tight thresholds, i.e., lower limits of
Δps, and χ2 SF, and a narrower HW range, as well as some
shifts in the center value for acceptable RCO2 and RH2O, cre-
ates  a  more  stringent  cloud screening scheme,  which  leads
to  lower  throughput,  but  a  higher  agreement  and  PPV.  In
other  words,  stringent  thresholds,  compared  to  loose  ones,
help to select scenes that are more “confidently clear”. The
fewer  scenes  remaining  have  better  agreement  with  the
MODIS reference state and are supposed to have less influ-
ence from clouds or aerosol contamination, thus giving bet-
ter quality assurance.

Similar trends are also observed in the contour plot cre-
ated  with  the  January  dataset;  although,  compared  to  the
July  dataset,  the  limit  for  Δps in  January  is  more  than
doubled  to  allow  a  reasonable  throughput  from  the  ABP
method. This could be explained by the high snow cover in
winter,  which  is  known to  increase  errors  in  cloud  screen-
ing and XCO2 retrievals.

A  sensitivity  test  is  performed  to  evaluate  the  rate  of
change  of  each  diagnostic  variable  relative  to  different
threshold values (Table 1). Five major threshold parameters
are tested one at a time, while others stay the same. The χ2

SF is not tested, because significant change in the ABP res-
ults  is  not  observed  unless  the  SF  is  set  to  be  extremely
small.

4.2.    Seasonal variation

Based on trends in the January and July contour plots,
we set the values of seasonal thresholds according to the aver-
age monthly clear-sky fraction in the selected area (Table 2).
The  current  thresholds  used  in  OCO-2  algorithms  are
designed  to  have  25%–30%  throughput  globally,  which
means  5%–10% more  than  the  clear-sky  fraction  observed
by MODIS (Taylor  et  al.,  2016).  In  contrast,  the  narrowed
thresholds  aim  to  have  throughput  close  to  the  observed
local clear-sky fraction in each month. The reduction of infla-
tion  over  the  MODIS  clear-sky  fraction  helps  to  minimize
the chance that some cloud- or aerosol-contaminated scenes
also pass the screening. It is also worth noting that cloud cov-
erage varies greatly throughout the year. The highest clear-
sky fraction occurs in summer, which is 55.1%, while the low-
est  occurs  in  winter,  which  is  29.5%.  The  spring  and  fall
have  close  values,  which  are  39.3%  and  40.0%,  respect-
ively. Therefore, custom thresholds for each season is import-
ant to fit the regional conditions.

A summary of the statistical values for the re-screened
dataset in each season is given in Table 3. For scenes with a
clear  reference  state,  the  TPR  ranges  from  0.69  to  0.84,
which is lowest in spring and highest in summer. For scenes
with a cloudy reference state, the TNR ranges from 0.91 to
0.94.  The  results  suggest  that,  compared  to  the  global  res-
ults in winter and spring given in Taylor et al. (2016), the cor-
rectly predicted clear scenes increased about 10%, and the cor-
rectly predicted cloudy scenes increased about 5%.

The  seasonal  throughput,  agreement  and  PPV  for  the
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ABP method, the IDP method and combined outcomes are
given in Fig. 4. The total throughput is 0.18 in spring, 0.42
in summer, 0.38 in fall, and 0.20 in winter. The numbers in
spring and winter are close to the values from the Glint-land
viewing scenario in Taylor’s work (~0.19), but lower than val-
ues  from  the  Nadir-land  (~0.26).  The  overall  agreement
with MODIS is 0.88 on average, and is relatively consistent
throughout  year.  There  is  a  constant  improvement  com-
pared  to  the  current  OCO-2  results  (~0.83).  The  overall
PPV is  0.77,  and  the  average  PPV of  spring  and  winter  is
0.63, which is higher than the 0.58 from Taylor’s results.

In general, the statistics in the summer and fall seasons

are  much  better  than  in  winter  and  spring.  This  indicates
that  the  remaining  data  might  still  contain  influence  from
snow-covered  surfaces.  A  close  examination  of  the  results
from  the  ABP  and  IDP  methods  shows  that  significant
improvement of the ABP method is mainly in summer and
fall, wherein the FNR can be reduced to about 0.02; on the
other  hand,  improvement  of  the  IDP  method  is  mainly
shown  in  the  same  seasons,  with  the  FPR  reduced  to  less
than 0.1.

4.3.    Comparison with TCCON in Europe and Japan

After  determining the new thresholds and re-screening
the OCO-2 measurements, the remaining retrievals were com-

 

 

Fig. 3. Changes of the throughput (left-hand column), agreement (middle column) and positive predictive value (PPV, right-
hand column) for variations in the ABP surface pressure and scale factor thresholds (a–c) and the IDP RCO2 (d–f) and RH2O
(g–i)  thresholds  based  on  OCO-2  and  MODIS  data  in  Europe  in  July  2016.  The  numbers  in  black  indicate  the  tightened
thresholds in this work, while the numbers in white indicate the original OCO-2 thresholds.
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pared with collocated TCCON measurements,  as  discussed
in  section  2.3. Figure  5 shows  scatterplots  of  the  seasonal
daily  average  XCO2 from  OCO-2  versus  collocated
TCCON observations,  in  the  order  of  time  (winter,  spring,
summer  and  fall).  It  is  rather  obvious  from  the  figure  that
the  re-screened  data  [(e–h)  on  the  right-hand  side],  com-
pared to the original data [(a–d) on the left-hand side], show
improvement,  especially  for  measurements  deviating  from
the one-to-one ratio line.

For  a  total  of  143  days,  or  143  pairs  of  data,  31  pairs

are removed after re-screening. For the remaining 112 pairs,
97 pairs have a smaller difference compared to the original
dataset.  Overall,  the  difference  between  the  average  XCO2

from  the  six  TCCON  sites  and  from  the  OCO-2  measure-
ments  passing  nearby  regions  reduced  34.7%,  decreasing
from  3.23  ppm  to  2.11  ppm.  The  average  OCO-2  XCO2

before re-screening is  398.19 ppm, the average uncertainty
is  3.85 ppm, and the standard deviation is  0.76 ppm. After
rescreening, the average XCO2 increases slightly to 399.71
ppm, the average uncertainty decreases to 2.52 ppm, and the

Table 1.   Sensitivity test for each threshold value.

Tested term* Selected value Test value Change (%) Result change (%) (for either ABP or IDP)

THR AGR PPV
Δps (hPa) 45 22.50 −50.00% −9.33% 3.70% 7.83%

33.75 −25.00% −3.08% 2.14% 3.12%
67.50 50.00% 4.59% −3.86% −4.61%
90.00 100.00% 8.40% −7.34% −8.17%

RCO2 center 0.99 0.97 −2.02% −32.90% −22.84% 8.67%
0.98 −1.01% −11.09% −4.78% 5.46%
1.00 1.01% 7.73% −1.43% −7.07%
1.01 2.02% 14.33% −5.12% −13.73%

RCO2 HW 0.04 0.030 −25.00% −11.09% −4.78% 5.46%
0.035 −12.50% −4.74% −1.22% 3.02%
0.045 12.50% 4.01% −0.29% −3.47%
0.050 25.00% 7.73% −1.43% −7.07%

RH2O center 0.99 0.96 −2.04% −2.72% 0.25% 2.18%
0.97 −1.02% −1.27% 0.22% 1.08%
0.99 1.02% 1.10% −0.33% −1.04%
1.00 2.04% 2.12% −0.74% −2.06%

RH2O HW 0.1 0.050 −50.00% −8.86% −0.96% 5.98%
0.075 −25.00% −3.60% 0.24% 2.83%
0.15 50.00% 5.11% −2.35% −5.20%
0.20 100.00% 9.19% −5.34% −9.66%

*χ2 scale factor is not tested, because significant change in the ABP results is not observed unless the scale factor is set to be extremely
small.

Table 2.   Settings of the ABP and IDP cloud screening thresholds used for the seasonal OCO-2 measurements discussed in section 2.1,
including the differences between the retrieved and priori  surface pressure (Δps), χ2 scale factor (SF),  and center and half-width (HW)
range for RCO2 and RH2O.

Clear-sky fraction Δps (hPa) χ2 SF RCO2 center RCO2 +/−HW RH2O center RH2O +/−HW

OCO-2(in operation) − 20 5 0.99 0.04 0.99 0.2
spring 0.30 70 3 0.99 0.04 0.97 0.1

0.28
0.31

summer 0.34 45 2 0.99 0.04 0.98 0.1
0.41
0.43

fall 0.50 40 3 0.99 0.035 0.99 0.08
0.56
0.60

winter 0.50 100 3 0.99 0.04 0.98 0.08
0.39
0.31
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standard deviation decreases to 0.71 ppm.
Among  the  six  sites,  the  Garmich  site  shows  the

greatest  improvement:  the difference of XCO2 between the
TCCON  and  OCO-2  measurements  decreases  by  59.4%.
The Karlsruhe site shows the second greatest  improvement
with  a  decrease  of  42.6%.  Next,  the  difference  at  the
Orleans site decreases by 31.0%; the difference at the Bialys-
tok site decreases by 28.7%; and the difference at the Paris
site  decreases  by  24.7%.  The  Bremen  site  shows  the  least
improvement with a decrease of 15.7%. There appears to be
no relation between the position of these TCCON sites and
the degree of improvement they have.

Based on the similarity of trends found in this work and
Taylor’s work, we believe that the same optimizing scheme
can be applied to worldwide locations. We applied the same
procedure  to  OCO-2  measurements  over  the  land  area  of
Japan,  and  compared  the  re-screened  data  with  three  local

TCCON sites (Table 4). However, there are far fewer data col-
lected by these TCCON sites, resulting in fewer possible com-
parisons  during  the  same  period.  Significant  improvement
of agreement between the TCCON and re-screened OCO-2
XCO2 is shown in summer and winter, though the latter has
a very small sample size.

5.    Conclusion

In  this  work,  individual  sets  of  threshold  parameters
were  sufficiently  tuned  to  seasonal  data  from  Europe  in
2016.  Based  on  two  months  of  collocated  OCO-2  and
MODIS data in January and July 2016, trends of diagnostic
variables as a  function of  threshold parameters  in the ABP
and  IDP  cloud  screening  methods  were  studied,  including
the fraction of scenes that pass the OCO-2 cloud screening
algorithms (throughput), the fraction of scenes that are cor-

Table 3.   Contingency tables for the comparison of the OCO-2 cloud screening results to MODIS cloud mask for each season in 2016 in
Europe. Results are from the combination of the ABP and IDP methods.

Reference clear Reference cloudy

Total
Season NTP TPR NFN FNR NFP FPR NTN TNR
Spring 49588 0.69 22633 0.31 27483 0.076 332775 0.92

Summer 188747 0.84 34628 0.16 22193 0.081 253491 0.92
Fall 173842 0.78 49533 0.22 16127 0.058 259557 0.94

Winter 52054 0.72 20167 0.28 32380 0.090 327878 0.91
ABP

Season NTP TPR NFN FNR NFP FPR NTN TNR
Spring 52097 0.72 20375 0.28 54808 0.12 388478 0.88

Summer 220793 0.98 4182 0.019 85834 0.29 207364 0.71
Fall 219865 0.98 5110 0.023 80070 0.27 213128 0.73

Winter 57545 0.79 14927 0.21 80848 0.18 362438 0.82
IDP

Season NTP TPR NFN FNR NFP FPR NTN TNR
spring 56648 0.78 15573 0.22 64347 0.18 296080 0.82

summer 189336 0.85 34504 0.15 23668 0.086 252247 0.91
fall 174424 0.78 49416 0.22 16732 0.061 259183 0.94

winter 55735 0.77 16486 0.23 57270 0.16 303157 0.84

 

 

Fig. 4. Seasonal throughput (a), agreement (b) and positive predictive value (PPV, c) for the ABP method, IDP method, and
combined outcomes.
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rectly classified by the algorithms (agreement), and the frac-
tion of clear scenes predicted by MODIS that are also pre-
dicted  clear  by  the  OCO-2  algorithms  (PPV).  By  lowering
the  limit  of  throughput  to  the  actual  clear-sky  fraction  for
each season, the possibility that contaminated scenes might
pass the filter due to the loosely set thresholds was minim-
ized. The agreement and PPV compared to a hybrid MODIS
cloud mask improved steadily, at  the cost of reducing total
throughput.

The analysis of re-screened OCO-2 measurements con-
firms  that  stringent  thresholds  lead  to  steady  improvement
of agreement and PPV compared to the collocated MODIS
cloud  mask.  In  addition,  comparisons  with  six  European
TCCON sites showed that the difference between the aver-
age  XCO2 from  TCCON  sites  and  from  OCO-2  measure-
ments passing nearby regions decreased from 3.23 ± 2.25 ppm
to 2.11 ± 1.76 ppm. In another case study, the same optimizing
procedure was applied to the Japan area, and the agreement

 

 

Fig.  5.  Scatterplots  of  seasonal  daily  average  XCO2 from  OCO-2  versus
collocated TCCON observations. The dotted line is the one-to-one ratio line,
while the solid line is the regression line.
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between  the  TCCON  and  OCO-2  results  improved  from
4.83 ± 5.25 ppm to 3.11 ± 4.82 ppm.

It is worth noting that certain assumptions in this work
might  lead  to  biases.  First,  we  obtained  the  clear-sky  frac-
tion  based  on  the  cloud  fraction  estimated  by  MODIS,
which  does  not  account  for  the  influence  of  aerosol,  even
though  by  the  design  of  OCO-2  cloud  screening,  the  days
with  high  aerosol  loadings  should  also  be  eliminated.
However, the aerosol loading in Europe is generally low, so
the  impact  from  aerosols  is  expected  to  be  small.  Second,
the rather low number of TCCON sites could lead to a repres-
entative bias. The low measuring frequency of MODIS and
OCO-2 could lead to the same issue. Therefore,  the results
in  this  work focus only on the collocated measurements  in
time and space. For future work, the procedure described in
this work could be generally applied to any other place with
TCCON sites around the world. It would be very helpful to
develop  regional  specialized  cloud  screening  thresholds,
and to provide better quality assurance for XCO2 retrievals.
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