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ABSTRACT

A  regional  Arctic  Ocean  configuration  of  the  Massachusetts  Institute  of  Technology  General  Circulation  Model
(MITgcm) is applied to simulate the Arctic sea ice from 1991 to 2012. The simulations are evaluated by comparing them
with  observations  from  different  sources.  The  results  show  that  MITgcm  can  reproduce  the  interannual  and  seasonal
variability  of  the  sea-ice  extent,  but  underestimates  the  trend  in  sea-ice  extent,  especially  in  September.  The  ice
concentration and thickness distributions are  comparable to  those from the observations,  with most  deviations within the
observational  uncertainties  and  less  than  0.5  m,  respectively.  The  simulated  sea-ice  extents  are  better  correlated  with
observations  in  September,  with  a  correlation  coefficient  of  0.95,  than  in  March,  with  a  correlation  coefficient  of  0.83.
However,  the  distributions  of  sea-ice  concentration  are  better  simulated  in  March,  with  higher  pattern  correlation
coefficients (0.98) than in September. When the model underestimates the atmospheric influence on the sea-ice evolution in
March,  deviations in  the sea-ice concentration arise  at  the ice edges and are  higher  than those in  September.  In  contrast,
when the model underestimates the oceanic boundaries’ influence on the September sea-ice evolution, disagreements in the
distribution  of  the  sea-ice  concentration  and  its  trend  are  found  over  most  marginal  seas  in  the  Arctic  Ocean.  The
uncertainties of the model, whereby it fails to incorporate the atmospheric information in March and oceanic information in
September, contribute to varying model errors with the seasons.
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Article Highlights:

•  An Arctic sea-ice simulation from 1992 to 2012 was performed to evaluate the model deficiencies in different seasons.
• The simulation uncertainties induced by atmospheric forcing and oceanic boundaries are different for reproducing the sea-
ice extent in March and September.
•  An effective way to isolate the roles of seasonally varying model errors is valuable for improving sea-ice simulation and

prediction.
 

 
 

1.    Introduction

Sea  ice  plays  an  important  role  in  the  Earth’s  energy
budget and has a substantial impact on local and remote atmo-

spheric  and  oceanic  circulations  (e.g., Steele  et  al.,  2008).
Due to its high albedo, sea ice can maintain cooler polar tem-
peratures  by  reflecting  much  of  the  incident  sunlight  back
into  space  (e.g., Maykut,  1982).  If  warming  temperatures
gradually  melt  sea  ice  over  time,  fewer  bright  surfaces  are
available to reflect sunlight back into space, and more solar
energy will be absorbed at the surface, which causes the air
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temperature to further increase and sea ice to be lost. This pos-
itive  feedback  process  between  sea  ice  and  temperature
makes the Arctic one of the most sensitive regions to global
warming,  contributing  to  Arctic  amplification  (Serreze  et
al., 2008). Since the increase in air temperature over the Arc-
tic Ocean has exceeded the average temperature increase in
the Northern Hemisphere, sea ice has undergone unpreceden-
ted decline in recent years (Overland et al., 2016). Many stud-
ies have shown that the reduction in the Arctic sea-ice cover
could  potentially  influence  the  weather  patterns  and  even
the  climate  in  the  Northern  Hemisphere  (e.g., Francis  and
Vavrus,  2012; Liu  et  al.,  2012, 2013; Cohen  et  al.,  2014).
For example, Hopsch et al. (2012) found that there is a mech-
anism of negative feedback between the North Atlantic Oscil-
lation and sea ice. On the other hand, the formation and abla-
tion of sea ice can directly change the salinity of seawater,
which affects the surface buoyancy flux in deep-water-forma-
tion  regions  and  further  modulates  the  Atlantic  thermo-
haline  circulation  (e.g., Holland  et  al.,  2001). Miles  et  al.
(2014) found that there exists an intrinsic link between sea-
ice  coverage  and  Atlantic  multidecadal  variability.  Due  to
atmospheric and oceanic circulations, changes in the Arctic
Ocean could further exert a widespread and far-reaching influ-
ence  on  human  societies  as  well  as  animal  habitats  (e.g.,
Regehr  et  al.,  2010; Eicken,  2013).  In  addition,  economic
factors, such as increased tourism, resource exploration and
the potential opening of sea routes in the Arctic Ocean, have
drawn increasing attention; these activities would definitely
benefit  from  reliable  sea-ice  simulations  and  predictions
(Smith and Stephenson, 2013).

In light of the importance of sea ice for both scientific
research  and  human  activities,  it  is  imperative  to  obtain  a
more comprehensive understanding with a reasonable predic-
tion  of  the  variability  in  Arctic  sea  ice  at  different  time
scales  (Guemas  et  al.,  2016).  Fortunately,  since  satellite-
observed sea-ice data became available in the mid-1970s, it
has been possible to continuously monitor the conditions of
Arctic sea ice. However, to a certain extent, satellite observa-
tions do not allow scientists to optimally view sea ice in all
conditions  due to  the  limitations  of  the  time span and spa-
tial resolution or to explore the physical processes involved
in  the  evolution  of  sea  ice  (Comiso  et  al.,  2017).  In  this
case,  climate  sea-ice  models  are  feasible  tools  for  simulat-
ing the evolution of Arctic sea ice and for investigating its
impact  on the climate  (Stroeve and Notz,  2015).  However,
no model simulations can perfectly capture the behavior of
the real world because the processes involved in sea-ice evolu-
tion are too complex to be described exactly by mathemat-
ical  equations.  According  to  the  assessment  of  CMIP5,
there  remains  considerable  scatter  in  the  modeled  sea-ice
extent, and the trends in sea-ice cover from most ensemble
members and models are mostly lower than the observed val-
ues (Stroeve et al., 2012b). CMIP6 models still tend to simu-
late a wide spread of the mean sea-ice area and volume, and
most models fail to simultaneously simulate a reasonable evol-
ution of sea-ice area (SIMIP Community, 2020). These dis-
agreements  between  the  model  simulations  and  observa-

tions could be the result of a combination of many underly-
ing  factors,  including  internal  variability,  the  shortcomings
of  the  sea  ice−ocean  model  formulations,  and  the  atmo-
spheric and oceanic forcing of the simulated sea ice (Notz et
al.,  2016).  Therefore,  the  reasonable  simulations  of  sea  ice
by  models  should  be  compared  to  observations,  and  the
sources of the model errors must be understood; this type of
analysis is  beneficial  to the development of sea-ice models
and leads to greater understanding of the significance of sea
ice regarding the global climate.

In this study, we focus on the representation of the sea-
ice concentration, sea-ice extent and sea-ice thickness to eval-
uate  the  performance  of  the  sea-ice  components  simulated
by the Massachusetts Institute of Technology General Circula-
tion Model (MITgcm). Many studies based on a regional Arc-
tic configuration of MITgcm have been performed to assess
and improve sea-ice simulations. For example, Losch et al.
(2010) presented  sea-ice  simulations  from  different  model
configurations  and  found  that  the  dynamic  solver  has  a
greater effect on model performance than the boundary condi-
tions,  ice rheology, and ice−ocean stress coupling; Nguyen
et  al.  (2011) attached  importance  to  the  uncertainties  from
model parameters and applied a green function approach to
adjust a set of parameters for optimized simulation; Yang et
al. (2014, 2016) improved the simulations of sea-ice concen-
tration  and  thickness  by  data  assimilation  and  presented
important  effects  from  the  atmosphere  on  sea-ice  simula-
tion.  These  studies  have  demonstrated  the  good  perform-
ance of MITgcm and investigated the possible sources lead-
ing to the uncertainties in the model results. However, most
of these studies focused on evaluating the decadal variabil-
ity or the trends of sea ice in simulations with MITgcm, and
further estimations of the model’s performance regarding sea-
sonal  sea-ice  simulations  and  the  possible  factors  for
model−observation  disagreements  in  different  seasons  are
needed.

In this work, we concentrate on evaluating aspects of Arc-
tic sea-ice simulations in March and September: (1) the distri-
bution  of  ice  concentrations  and  the  corresponding  extents
over  the  simulation  period  are  assessed  to  determine  how
well  the  model  captures  the  observed  state  of  the  sea-ice
cover,  and  (2)  the  trends  in  the  March  and  September  ice
extent  and  concentration  are  assessed  to  measure  whether
the model has the ability to capture the response of the Arc-
tic sea ice to global climate change in different seasons (Stro-
eve et al., 2012b). Additionally, both the temporal and spa-
tial  distributions  of  the  sea-ice  thickness  are  discussed  to
assess the performance of the model. We then carry out fur-
ther analysis on the relationship between the sea-ice extent
and the boundary conditions, including the atmosphere and
the ocean, to explore the possible sources of disagreements
between  the  simulations  and  observations  in  March  and
September.

The  structure  of  this  paper  is  as  follows:  In  section  2,
we introduce the data and methods used for model simula-
tion and evaluation. In section 3, the spatiotemporal variabil-
ity  of  sea-ice  cover  and thickness  are  evaluated.  In  section
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4,  an  analysis  of  the  possible  model  error  sources  is  per-
formed. And finally, section 5 provides a discussion and con-
clusions.

2.    Data and methods

2.1.    Data

The Arctic  configuration  of  MITgcm is  similar  to  that
used by Yang et al. (2014), more information on which can
be  found  in  the  supplementary  material.  The  simulation
starts  from  climatological  initial  fields  including  temperat-
ure  and salinity  derived from the World Ocean Atlas  2005
(Antonov  et  al.,  2006; Locarnini  et  al.,  2006).  The  lateral
boundary conditions, including the monthly potential temper-
ature, salinity and ocean currents, are derived from the Estim-
ating  the  Circulation  and  Climate  of  the  Ocean  project,
Phase II (ECCO2) (Menemenlis et al., 2008). The model is
forced with six hourly atmospheric forcing variables, includ-
ing 2-m air temperature, 2-m specific humidity, 10-m wind
speed,  downward  shortwave  radiation,  downward  long-
wave radiation, and precipitation, obtained from the Japan-
ese 25-year Reanalysis Project (JRA-25) reanalysis data and
the  Japan  Meteorological  Agency  Climate  Data  Assimila-
tion System (Onogi et al., 2007). In addition, to further invest-
igate the relationship between sea ice and atmospheric for-
cing,  ERA-Interim,  a  global  atmospheric  reanalysis  from
1979, is analyzed in section 4 (Dee et al., 2011).

The observations of sea ice chosen for the model−obser-
vation  intercomparison  studies  are  summarized  in Table  1.
As discussed in Notz (2014), the estimation of sea-ice concen-
tration differs in different algorithms that derive the sea-ice
concentration from the satellite data by different transfer func-
tions. In this work, the simulations are compared with satel-
lite  retrievals  of  sea-ice  concentration  based  on  three
algorithms—namely,  the  Bootstrap  algorithm  (Comiso,
2017), the NASA Team algorithm (Fetterer et al., 2017) and
the  ARTIST  Sea  Ice  (ASI)  algorithm  (Kaleschke  et  al.,
2001)—to evaluate the performance of the model. Both the
Bootstrap  algorithm  and  NASA  Team  algorithm  provide
sea-ice  concentration  data  from  1979  onwards  and  come
from  SMMR,  SSM/I  and  SSMIS.  The  satellite  retrievals
based  on  the  ASI  algorithm provide  the  sea-ice  concentra-

tion  based  on  SSM/I  from  1991  onward  and  based  on
AMSR-E  data  from  2002  onward.  Based  on  the  gridded
data  of  sea-ice  concentration,  the  sea-ice  extent  is  calcu-
lated by adding the area of all grid cells with an ice concentra-
tion of more than 15%. Sea-ice thickness observations from
different data sources, including ICESat, CryoSat2 and Opera-
tion IceBridge, are chosen for model evaluation.

2.2.    Analysis method

It  is  well  known  that  the  root-mean-square  deviation
(RMSD) is a measure of the average distance between simula-
tions and observations. The fact that the RMSD can be decom-
posed into several components makes it possible to determ-
ine the specific source of the difference between simulation
and  observation  (Taylor,  2001).  The  decomposition  of
RMSD is defined as 

RMSD( f , x)2 = ( f̄ − x̄)2+ s2
f + s2

x −2s f sxR , (1)

f̄ x̄ s f sx

( f̄ − x̄)2

(s2
f + s2

x −2s f sxR)

where  and  are  the  mean  values  and  and  are  the
standard  deviations  of  the  simulations  and  observations,
respectively. R is the correlation coefficient between f and x.
Because the standard deviations are orders of magnitude lar-
ger  than  the  mean values,  the  RMSD in  this  work  is  com-
posed of  two terms:  the  first  term  is  referred  to  as
the “bias”, and the sum of the other terms 
is referred to as the “variance”, which is on the right-hand
side  of  Eq.  (1).  To  more  easily  understand  the  “variance ”
term on the  right-hand side,  its  variation  can  be  viewed as
the variation in the square of the difference between the stand-
ard deviations of the simulation and the observation, since 

s2
f + s2

x −2s f sxR ⩾ (s f − sx)2 , (2)

R ⩽ 1
s f sx

where  in this work. This relation means that the differ-
ence between  and  contributes to the overall deviation.

3.    Simulation results

The simulation analysis started in 1991 after a training
period from 1979 to 1990. In this section, the simulations of
sea-ice  extent,  sea-ice  concentration,  and  sea-ice  thickness
are  evaluated,  which aims to  explore  the model’s  perform-
ance in different seasons.

Table 1.   Data used for model evaluation and simulation.

Data type Description Temporal coverage Source

Sea-ice concentration Bootstrap algorithm 1991−2012 Comiso (2017)
NASA Team algorithm 1991−2012 Fetterer et al. (2017)

ASI algorithm 1992−2012 Kaleschke et al. (2001)
Sea-ice thickness ICESat 2003−2008, February−March and October−November Yi and Zwally (2014)

CryoSat2 2010−2012, October−April Hendricks and Ricker (2019)
Operation IceBridge 2009−2012, spring mean Stroeve and Meier (2016)

Atmospheric forcing JRA-25 1991−2012, 6-hourly Onogi et al. (2007)
ERA-Interim 1991−2012, 6-hourly Dee et al. (2011)

Oceanic boundary ECCO2 1991−2012, monthly Menemenlis et al. (2008)
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3.1.    Temporal variability in the sea-ice extent

The time series from 1991 to 2012 of the annual mean
sea-ice  extent  in  the  Arctic  from satellite  observations  and
model  simulations  are  compared  in Fig.  1a.  The  vertical
lines  indicate  ranges  of  observations  from  different
algorithms, and the dashed line is their average. It is appar-
ent that both series clearly show a downward trend and sim-
ilar  interannual  variability.  The  low sea-ice  extent  in  2007
in  the  three  observational  datasets  (Francis,  2013)  is  also
shown in the simulations. There still exists an overall differ-
ence  between  the  Arctic  sea-ice  extent  of  the  simulations
and  that  of  the  observations.  However,  the  simulations  are
within  the  range  of  observations,  except  after  2009.  The
model  fails  to  reproduce  the  record  minimum  in  2012,
which  further  contributes  to  the  disagreement  in  trend
between the simulations and observations. The trends in the
sea-ice  extent  from  the  simulations  and  observations  are
−0.48  ×  106 km2 (10  yr)−1 and  −0.68  ×  106 km2 (10  yr)−1,
respectively, which indicates that the observed reduction in
the sea-ice extent is faster than the simulated reduction.

In  addition  to  the  interannual  variability,  the  seasonal
cycle  is  one  of  the  most  noteworthy  features  of  Arctic  sea
ice.  The seasonal  cycle  of  the  sea-ice  extent  is  represented
well  in  the  model  simulation,  with  the  monthly  sea-ice
extent varying between the lowest extent in September and
the highest in March (Fig. 1b). During the melt season, the
model overestimates the observed sea-ice extent; while dur-
ing  the  growth  season,  the  simulated  sea-ice  extents  are
slightly lower than the observed extents. Additionally, vari-
ations in multi-year  averages of  monthly sea-ice extent  are
more  pronounced  in  summer  than  in  winter.  However,  the
model  underestimates  the  variations  in  monthly  sea-ice
extent over the period 1991−2012, especially in summer, by
an  average  of  0.3  ×  106 km2.  Overall,  the  temporal  vari-

ations in the observed sea-ice extent over the past 20 years
fall within the distribution of the sea-ice extent simulated by
MITgcm  with  2  standard  deviations,  indicating  that  the
model  can  properly  reproduce  the  seasonal-to-interannual
variability in the Arctic sea-ice extent.

To further investigate the possible reasons for the differ-
ences between the annual sea-ice extent of simulations and
that  of  observations,  the  temporal  evolution  of  the  RMSD
between  the  detrended  monthly  sea-ice  extent  anomalies
from  the  model  simulations  and  those  from  the  observa-
tions is examined over the entire period. Figure 2 shows the
results  from  the  observations  based  on  the  Bootstrap
algorithm,  and  the  results  from  other  observations  are
shown  in  the  supplementary  material.  The  RMSD  ranges
from 0.2 to 0.6 million km2 in Fig.  2a,  and there is  a wide
spread of RMSD in each year between the results from the
three  observations.  Thus,  the  algorithm  uncertainty  of  the
sea-ice  extent  data  could  have  an  impact  on  the  deviation
between the simulations and the observations. Additionally,
there  is  an  increase  in  the  mean  RMSD  of  0.32  over  the
period  1991−2007  to  0.46  over  the  period  of  2008−2012,
which is consistent with the underestimated ice extent over
2008−2012  from  the  simulations  in Fig.  1a.  This  phe-
nomenon is  prominent  in  the  results  from the  observations
based on the Bootstrap and NASA Team algorithms. A pos-
sible reason for this increasing disagreement between the sim-
ulations  and  observations  is  the  uncertainty  in  the  satellite
retrievals. In 2008, the SSM/I onboard the Defense Meteorolo-
gical Satellite Program (DMSP)-F13 satellites was replaced
by the SSMIS onboard the DMSP-F17 satellites, which signi-
ficantly  affects  the  derived  sea-ice  extent  (Cavalieri  et  al.,
2012). However, in this study, we pay more attention to the
model errors than the limitations to satellite data. To investig-
ate the specific source of the difference apart from the obser-

 

 

Fig. 1. Time series of the (a) annual mean and (b) seasonal cycle of monthly mean Arctic sea-ice extent from model
simulations (solid red line) and observations (dashed blue line; vertical lines indicate the ranges of observations from
different algorithms) over the period 1991−2012. Shading in (b) represents the range of ± 2 standard deviations.
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vational uncertainty, Fig. 2b displays a histogram of the tem-
poral  variation  in  the  squared  RMSD  consisting  of  the
“bias” and “variance” following Eq.  (1),  and a  line of  the
ratio of “bias” to “variance”.  It  shows that  the increase of
the  ratio  of  bias  contributes  to  the  increase  of  the  RMSD.
However, the magnitude of the variance in each year is sub-
stantially larger than that of the bias, which suggests that the
change in  the  variance is  the  dominant  source  contributing
to the RMSD. The root of bias in Fig. 2c also displays an obvi-
ous  increment  from  1991−2007  to  2008−2012,  with  relat-
ively high values in 2008 and 2011, which is consistent with
the  variations  in  RMSD  since  2008.  This  result  indicates
that the peaks of RMSD may be due in part to the signific-
ant difference between the annual mean ice-extent values of
the simulations and observations.

s f sx

s f sx

On the other hand, it  can be inferred that the variation
in  the  variance  comes  from  the  variation  in  the  difference
between the standard deviations of the simulation and obser-
vation [Eq.  (2)].  To simplify the quantification of  the vari-
ance, Fig. 2d compares the temporal evolution of the stand-
ard deviations of the simulations ( ) and observations ( ).
It is noteworthy that the difference between  and  obvi-
ously increases from 2008 to 2012, which contributes to the
sharp  increase  in  RMSD  during  the  same  period.  In  this

case,  the  annual  standard  deviation  represents  the  amp-
litude of the seasonal cycle of sea-ice extent. In the satellite
data record, the decline in ice extent over a single melt sea-
son  after  2008  exceeds  10  million  km2,  which  is  not
observed before  2007.  A possible  reason for  this  is  that  as
the ice cover thins and first-year ice prevails, larger regions
become  vulnerable  to  anomalously  extreme  atmospheric
events  (Stroeve  et  al.,  2012a).  Hence,  the  disagreement
between the standard deviations of the simulations and obser-
vations over the period 2008−2011 depicted in Fig. 2d indic-
ates  that  the  model  fails  somewhat  to  capture  the  signals
from the external forcings and reproduce the seasonal variabil-
ity in the sea-ice extent. The results from the other two obser-
vations  also  show  that  the  variance  dominates  the  RMSD
between the simulations and observations, and the seasonal
variability in the simulations should be improved.

Therefore,  it  is  necessary  to  pay  attention  to  the  vari-
ation  in  the  representative  seasons—March  and  Septem-
ber—when the sea-ice extent reaches the maximum and min-
imum  at  the  end  of  the  growth  season  and  melt  season,
respectively. Thus, March and September are chosen as two
representative  months  to  explore  the  model’s  performance
under winter and summer conditions. Figure 3 shows the tem-
poral  evolution of  the  Arctic  sea-ice  extent  and its  linearly

 

 

106 km2Fig.  2.  Time  series  of  the  RMSD  (units: )  between  the  detrended  monthly  sea-ice  extent  anomalies  from
simulations  and  those  from  observations  based  on  the  Bootstrap  algorithm  and  the  RMSD-related  terms  over  the
period 1991−2012: (a) RMSD; (b) squared RMSD (histogram), consisting of “bias” and “variance”, and the ratio of
“bias ”  to  “variance ”  (line);  (c)  absolute  mean  difference  between  simulations  and  observations;  (d)  standard
deviation of simulations (red solid line) and observations (blue dashed line).
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detrended anomalies in March and September for the period
1991−2012. The ranges of the monthly sea-ice extent from
different  observations  are  depicted  in Figs.  3a and b.
Although uncertainties of the sea-ice extent persist, the variab-
ility and trends in the sea-ice extent  from different  sources
are consistent. Generally, the simulated interannual variabil-
ity  in  ice  cover  is  correlated  well  with  the  three  observa-
tions  (OBS-Bootstrap,  OBS-NASA  Team,  and  OBS-ASI),
with correlation coefficients that are statistically significant
at  the  99% confidence  level  both  in  March and September
(Table  2).  The  model  basically  overestimates  the  sea-ice
extent in March, which contributes to a higher value of the
simulated annual  mean sea-ice extent,  which is  depicted in
Fig. 1a. It is encouraging that the values of the model simula-
tions in September are almost identical to the observations,
reproducing  the  dramatic  decrease  in  2007  and  the  min-
imum  in  2012.  However,  it  is  obvious  that  different
algorithms  induce  higher  uncertainties  in  determining  the
sea-ice extent in March; hence, most of the simulated March
sea-ice extent values are within the range of different observa-
tions, while the September sea-ice extent values are not. Addi-

tionally, compared with the observations, the simulated sea-
ice extent in September is slightly overestimated after 2008,
which together with the higher sea-ice extent in March can
explain the increasing RMSD after 2008, as previously indic-
ated.

Table 3 lists the trends in the monthly sea-ice extent for
March and September from the model simulations and obser-
vations  with  a  95%  confidence  interval.  The  trends  in  the
sea-ice  extent  derived  from different  algorithms  are  gener-
ally  compatible,  and  more  negative  trends  are  presented  in
the OBS-NASA Team and OBS-ASI than in the OBS-Boot-
strap.  There is  a  good agreement in the trend in March ice

Table  2.   Correlation  coefficients  for  the  sea-ice  extents  of  the
simulations  and  observations  over  the  period  1991−2012.  The
numbers in brackets are results from the detrended time series.

OBS-Bootstrap OBS-NASA Team OBS-ASI

March 0.83* (0.75*) 0.83* (0.75*) 0.83* (0.74*)
September 0.94* (0.89*) 0.94* (0.90*) 0.95* (0.92*)

*Correlation coefficient is significant at the 99% level.

Table 3.   Trends [units: % (10 yr)−1] in the sea-ice extent over the period 1991−2012 at a 95% confidence interval.

MITgcm OBS-Bootstrap OBS-NASA Team OBS-ASI

March −1.8 ± 1.2 −2.1 ± 1.2 −2.6 ± 1.4 −2.7 ± 1.4
September −15.2 ± 6.6 −22.8 ± 6.9 −23.3 ± 6.6 −23.6 ± 6.7

 

 

Fig. 3. Time series of monthly mean sea-ice extent in (a) March and (b) September over the period 1991−2012 and
time series of detrended monthly sea-ice extent anomalies in (c) March and (d) September. Simulations are shown by
the red solid line, and observations are shown by the blue dashed line. Vertical lines indicate ranges of sea-ice extent
from different observations.
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extent  between  simulations  and  the  observations  based  on
the Bootstrap algorithm. However, the rate of decline of the
simulated  ice  extent  in  September  of  −15.2%  (10  yr)−1 ±
6.6%  (10  yr)−1 is  significantly  slower  than  all  the  three
observed rates: −22.8% (10 yr)−1 ± 6.9% (10 yr)−1, −23.3%
(10 yr)−1 ± 6.6% (10 yr)−1 and −23.6% (10 yr)−1 ± 6.7% (10 yr)−1.
The notably lower September trend in ice extent from the sim-
ulations  is  partly  due  to  the  overestimated  ice  extent  after
2008, as previously indicated. Although the simulated reduc-
tion  is  slower  than  the  observed  reduction  in  both  March
and September, the observed trends fall within the distribu-
tion of the simulated trends at a 95% level of statistical signi-
ficance. Notz (2014) found that the uncertainty arising from
internal  variability  is  the  dominant  reason  for  the  differ-
ences  between  modeled  and  observed  trends  in  sea-ice
extent.  Therefore,  the  difference  between  the  trends  of
model simulations and observations is not just due to model
deficiencies.

For the temporal variations of the detrended anomalies
of the sea-ice extent, Figs. 3c and d show that the model is
very  capable  of  reproducing  the  internal  variability  in  the
ice  cover  in  both  March  and  September  over  the  period
1991−2012. After detrending, the simulations and observa-
tions still maintain high correlation coefficients of averages
of  0.75  and  0.90  for  March  and  September,  respectively,
that are statistically significant at the 99% confidence level
(Table 2). Obviously, the model performs better in simulat-
ing  the  sea-ice  extent  in  September,  with  a  higher  correla-
tion coefficient.  To examine the performance of  the  model
in more detail, we further evaluate the spatial distribution of
the sea-ice concentration and its trend to investigate the dis-

crepancies  between  the  simulation  and  observation  related
to the location.

3.2.    Spatial distribution of sea-ice concentration

To gain additional insight into the spatial discrepancies
between the simulations and observations, we explore the spa-
tial distribution in terms of the trends and RMSD in the sea-
ice concentration for March and September. Figure 4 shows
a comparison of the spatial distributions of the trends in the
sea-ice concentration in units of percent per decade at each
grid  cell  in  March and September;  least  squares  regression
is  used  to  calculate  the  trend  in  ice  concentration  for  that
month over the entire time series at each grid cell. Figures 4a−
c show the trend maps in March over the period 1991−2012
from  the  observations  and  simulations  and  the  differences
between  them.  Obviously,  the  sea-ice  concentration  in  the
Arctic basin is usually close to 100% in wintertime; hence,
the significant trends in the sea-ice concentration in March
only  appear  close  to  the  ice  edges  in  both  the  simulations
and observations, which are observed to be negative (reduc-
tion) in the Barents Sea and Labrador Sea and positive (aug-
ment)  in  the  Bering  Sea.  Furthermore,  the  difference
between  the  trends  of  the  simulations  and  observations  is
mainly positive (i.e., the downward trends in the simulation
are  slower  than  those  in  the  observation)  at  the  ice  edges,
indicating  that  MITgcm slightly  underestimates  the  rate  of
decline of sea-ice concentration in March by less than 20%
(10  yr)−1.  However,  the  trend  maps  in  March  are  virtually
identical, and the difference map shows only very minor dif-
ferences near the ice edges.

Figures 4d−f compare the corresponding trend maps of

 

 

Fig.  4.  Spatial  distributions  of  the  linear  trends  of  sea-ice  concentration  in  March  over  the  period  1991−2012  from  (a)
observations, (b) simulations and (c) their difference: simulations minus observations. (d−f) As in (a−c) but for September.
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sea-ice  concentration  in  September.  The  trend  maps  of  the
simulations  and  observations  show similar  spatial  distribu-
tions with downward trends around the eastern edges of the
Arctic pack, with the most negative trends occurring in the
Beaufort Sea region, where sea ice is retreating at the fast-
est rate in decades. The disagreements in the trend maps in
the ice concentration are qualified in Fig. 4f, with the largest
magnitude of difference in the Beaufort Sea, where the simu-
lated sea ice declines at a much lower rate than the observed
trend  in  September.  The  difference  maps  of  the  trends  in
March  and  September  are  consistent  with  the  aforemen-
tioned discussion about the sea-ice extent trend in Table 3 stat-
ing that the rate of decline for the observed sea ice is much
faster than that simulated in September.

To further assess the model performance in simulating
the sea-ice concentration, Fig. 5a shows the spatial distribu-
tion  of  the  mean  sea-ice  concentration  from  simulations
over  the  period  1991−2012  in  March.  The  discrepancies
between the simulations and averaged observations from dif-
ferent algorithms are quantified by calculating the RMSD at
each  grid  over  the  entire  period  and  are  shown in Fig.  5b.
The large-scale features of the observed spatial distribution
of the sea ice are simulated well in March, with 100% ice cov-
erage in the Arctic basin.  Both the simulated and observed
sea-ice  concentrations  have  very  similar  spatial  distribu-
tions. except for some regional discrepancies in the Green-
land Sea, Barents Sea and Labrador Sea. By checking the val-
ues  of  simulations  minus  the  observations  (figure  not

 

 

Fig. 5. Spatial distribution of the mean sea-ice concentration in March over the period 1991−2012 from (a) simulations, (b)
RMSD between simulations and observations, and (c) observation uncertainty. (d−f) As in (a−c) but in September. The time
series of (g) is the pattern correlation between the simulated sea-ice concentration and the observed sea-ice concentration in
March (red line with squares) and in September (blue line with triangles) over the entire period.
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shown),  we found that  the model tends to overestimate the
sea-ice concentration around ice edges that should be open
water in March. These biases in the simulations lead to a relat-
ively higher sea-ice extent in March, as depicted in Fig. 3a.

The corresponding analysis of the spatial distribution of
the sea-ice concentration in September is illustrated in Figs.
5d−f.  Generally,  the  maps of  the  simulations  (Fig.  5d)  and
observations (not shown) show very similar representations
of the sea-ice coverage in September but disagree regarding
the  ice-concentration  distributions,  which  indicate  that  the
model  obviously  overrates  the  ice  ablation  and  simulates
sea-ice concentrations that are low in the marginal regions.
The  RMSD  map  (Fig.  5e)  indicates  that  there  are  small-
value but large-area differences between the sea-ice concentra-
tion of the simulations and observations in September over
the  marginal  seas  of  the  Arctic  Ocean,  including  the
Beaufort  Sea,  Chukchi Sea,  East  Siberian Sea,  Laptev Sea,
Kara and Barents Sea. It makes sense that the model gener-
ally  performs  better  in  reproducing  sea-ice  coverage  in
March due to the consistent ice coverage in the late winter.
However, in September, the sea ice at low and intermediate
concentrations occupies a large marginal zone, which leads
to  a  large  uncertainty  in  the  model  simulations.  Both  the
dynamics and thermodynamics of the model are more com-
plicated regarding the sea-ice conditions at the marginal sea
region,  where  sea-ice  drifting and melt-pond formation are
expected during the melt season.

To account for the uncertainty in the sea-ice concentra-
tion  field  obtained from the  satellite  data,  the  mean ranges
of the sea-ice concentration in March and September from dif-
ferent algorithms for the same period are depicted in Figs. 5c
and f. The differences between the sea-ice concentrations of
different algorithms are apparent, particularly in September,
and are generally less than 0.3. In September, large-area dif-
ferences  arise  between  the  different  satellite  retrieval  data
over  the  Arctic  Ocean,  where  low  sea-ice  concentrations
with greater uncertainty in the passive microwave data pre-
vail. However, in March, different satellite products provide
very similar sea-ice concentration fields, except uncertainty
arises  around  the  ice  edges,  especially  in  the  Bering  Sea.
The  depictions  of  the  RMSD  contribute  to  estimating
whether  a  certain  difference  between  the  simulations  and
observations lies within the observational uncertainty (Notz,
2014).  In  most  areas,  the  discrepancies  between  simula-
tions  and  observations  shown  in Figs.  5b and e lie  within
the  algorithmically  based  uncertainty  in  observations.
However, there are obvious deviations that outrange the cor-
responding  uncertainties  around  the  ice  edge  at  the  North
Atlantic in March and over large areas of the marginal seas
in  September,  where  the  model  performs  worse,  as  dis-
cussed above.

Although the simulated sea-ice extents match the observa-
tions quite well in September, as previously indicated, the spa-
tial distribution of the sea-ice concentration significantly dif-
fers from the observations. In addition, the similarity of the
spatial distribution and the pattern correlations, which is a lin-

ear correlation between the sea-ice concentrations from the
simulations and observations at  corresponding locations on
two different maps, are shown in Fig. 5g. It is apparent that
the  pattern  correlation  in  September  is  much  smaller  than
that  in  March  each  year,  which  means  that  the  disagree-
ment  between  the  spatial  distributions  of  the  simulations
and observations is stronger in September. The pattern correla-
tion for September changes more drastically, which implies
that it is harder to capture the ice distribution in a particular
year, probably due to unusual weather conditions.

3.3.    Preliminary evaluation of sea-ice thickness

In addition to the sea-ice coverage, the variation in the
sea-ice  thickness  directly  affected  by  thermodynamic  and
dynamic  processes  is  essential  for  assessing  the  perform-
ance of numerical models. However, the observations of Arc-
tic sea-ice thickness have been spatially sparse and tempor-
ally  sporadic  (Tilling  et  al.,  2015).  Therefore,  the
model−data  comparisons  of  sea  ice  thickness  have  to  be
restricted  to  the  specific  periods  and  regions  when  and
where observations are available.

The  monthly  sea-ice  volumes  are  calculated  by  taking
the  product  of  the  ice  thickness  excluding  open  water,  the
sea ice concentration, and the ice area. The observed sea-ice
volumes  from  CryoSat-2  during  the  sea-ice  growth  period
(October to April) from 2010 to 2012 are shown in Fig. 6a
with  uncertainties  considering  the  algorithm uncertainty  of
the  sea-ice  thickness  retrieval  contained  in  the  CryoSat-2
data  product  (Hendricks  and  Ricker,  2019).  The  results
show  that  the  model  captures  the  strong  seasonal  cycle  of
growth  and  melt  of  the  Arctic  ice  and  reproduces  the
observed  seasonal  sea-ice  volume  changes  from  fall  to
spring. However, the model generally overestimates the sea-
ice volume by an average of  2.87 × 103 km3,  especially  in
the fall, and produces a slower average October−April sea-
ice growth rate of 1.45 × 103 km3 per month compared with
the  1.65  ±  0.55  ×  103 km3 per  month  observed  during  the
period.  To  further  quantify  the  seasonal  sea-ice  thickness
changes  from  fall  (October−November)  to  spring  (Febru-
ary−March), Figs.  6b and c show the overall  sea-ice thick-
ness frequency distributions with statistics (mean and stand-
ard deviation) from CryoSat-2 and the model, respectively.
Both  show  distribution  changes  from  fall  with  more  first-
year  ice  to  spring  with  more  multi-year  ice.  The  observed
sea ice has a mean thickness of 1.08 m in the fall of 2011.
Four months later, the overall thickness is 1.65 m, represent-
ing an increase of 0.57 m. In contrast, the increase in the simu-
lated  mean  sea-ice  thickness  between  the  fall  of  2011  and
spring  of  2012  is  0.35  m,  starting  with  a  mean  of  1.66  m.
This  means  that  the  model  simulates  a  higher  mean  thick-
ness of sea ice but underestimates the seasonal increases in
sea-ice thickness. In addition, compared with those of the sim-
ulations, the sea-ice thickness distributions from CryoSat-2
peak sharply with lower standard deviations in both fall and
spring.  There  is  a  relatively  high probability  for  the  model
to simulate thicker ice in both seasons.

To further assess the spatial differences in different sea-
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sons, the maps of the sea-ice thickness from the simulations
and ICESat, and their differences, are shown in Fig. 7. The
sea-ice thickness is derived from 15 ICESat campaigns that
spanned  a  period  of  different  days  from  2003  to  2008,  so
the spatial  distribution of  mean ice  thickness  in  spring and
fall  are  presented.  For  direct  comparison  with  the  simula-
tions,  the  modeled  sea-ice  thickness  is  interpolated  to  the
ICESat  grid.  A  combined  average  of  February  and  March
from  the  simulations  is  used  for  comparison  with  the
ICESat spring campaigns, and the combined average of Octo-
ber and November is used for comparison with the ICESat
fall campaigns (Schweiger et al., 2011). In general, the spa-
tial  patterns  of  ICESat  and  the  simulated  sea-ice  thickness
fields show good agreement,  with high pattern correlations
of  0.9  and  0.8  in  spring  and  fall,  respectively.  The  model
tends to overestimate the thickness of the sea ice throughout

the  Arctic  basin  in  spring,  with  a  mean  bias  of  0.17  m.  In
the  fall,  the  deviations  between  the  sea-ice  thicknesses  of
the model and observations are smaller, with a mean bias of
−0.04 m, and the model underestimates the thickness of the
sea ice around the Kara seas and the Eurasian basin. This pos-
sibly  occurs  because  the  model  underestimates  the  advec-
tion  of  thick  ice  and  the  divergence  between  last  autumn
and spring (Kwok and Cunningham, 2008). In addition, the
frequency  distributions  of  the  sea-ice  thickness  difference
show  that  the  leading  difference  in  both  spring  and  fall  is
restricted to 0−0.5 m. Additionally, Kwok et al. (2009) estim-
ated that the ICESat thickness uncertainties are 0.5 m for indi-
vidual 25-km ICESat grid cells. Therefore, it is obvious that
the disagreements between the sea-ice thicknesses of simula-
tions  and  observations  are  acceptable  and  the  model  has
good performance regarding sea-ice thickness simulation. In

 

 

Fig.  6.  (a)  The Arctic  sea-ice  volume from Cryosat-2  (red stars)  and simulations  (blue line)  over  2010−2012.  The
vertical lines indicate the uncertainties in the Cryosat-2 monthly sea-ice volume. (b) Distribution of sea-ice thickness
from Cryosat-2 during the fall (black) of 2011 and the spring (red) of 2012. The numbers are the mean thickness and
standard deviation (in brackets) for each distribution. (c) As in (b) but for the simulations.
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addition, the model tends to underestimate the sea-ice thick-
ness  in  the  fall  but  overestimate  the  sea-ice  volume,  as
shown above. This further demonstrates that the sea-ice con-
centration  from  the  simulations  is  very  uncertain  in  fall,
which is consistent with the above analysis of the sea-ice con-
centration.

Moreover, for a more detailed analysis of the modeled
sea-ice thickness,  comparisons to in-situ observations from
Operation IceBridge are conducted (Sato and Inoue, 2018).
These  data  are  available  in  spring  over  the  period
2009−2012  along  aircraft  tracks,  as  shown  in Fig.  8a.  The

scatterplot  (Fig.  8b)  of  the  sea-ice  thickness  shows  that
there  is  a  significant  correlation  (0.67)  between  the  model
and  in-situ  measurements  in  spring,  with  a  mean  bias  of
−0.06 m. Specifically, the model fails to reproduce the sea-
ice thickness distribution in 2010, with a correlation coeffi-
cient (0.1) that is not significant at the 99% level. The mean
error indicates that the model generally simulates slightly thin-
ner  ice  in  this  region,  and  the  RMSD  (0.51)  indicates  that
there is high uncertainty in the model regarding the reproduc-
tion of the thick ice along the coast.

In summary, the simulated sea-ice volume shows reason-

 

 

Fig. 7. Mean 2003−2008 (a, d) modeled and (b, e) ICESat sea-ice thicknesses for (a, b) spring (February−March) and (d, e)
fall (October−November). The spatial distributions and the fraction distributions of the differences in ice thickness are shown
in (c, f) and (g, h), respectively. The color scale is given in m.
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able seasonal variation, and the simulated sea-ice thickness
frequency  distributions  in  the  fall  and  spring  are  in  good
agreement  with  the  observations.  The  model  also  repro-
duces  spatial  distributions  of  sea-ice  thickness  similar  to
both  satellite  and  airborne  observations.  However,  the
model  tends  to  present  a  slower  growth  rate  for  sea  ice  in
autumn through spring. The sea-ice thickness from simula-
tions shows different deviations due to a lack of reasonable
advection. Uncertainties exist for the three observational data-
sets  in the sea-ice extent  and sea-ice concentration,  but  the
variability and trends in the sea-ice extent and sea-ice concen-
tration  from different  observational  datasets  are  consistent.
Although uncertainties exist for the three observational data-
sets in the sea-ice extent and sea-ice concentration, the simula-
tions  are  basically  within  the  range  of  observations.  The
trends  in  the  sea-ice  concentration  and  ice  extent  from the
data derived from different algorithms are generally compat-
ible, and the model underestimates the observed downward
trends in the sea-ice extent; a comparison of the derived ice
extents from different sources is presented in the Electronic
Supplementary  Material  (ESM,  Figs.  S1−6).  In  March,
disagreements between the distributions of the sea-ice concen-
trations  of  the  simulations  and  observations  only  exist  at
the  ice  edges,  with  relatively  high  RMSD.  Likewise,  the
spatial distributions of the trends in the simulated ice concen-
tration are in reasonably good agreement with the observa-
tions  in  March.  In  September,  there  are  generally  similar
spatial patterns but large-area disagreements in the ice concen-
tration  distributions  over  the  marginal  seas  in  the  Arctic
Ocean,  where  there  is  a  relatively  lower  RMSD. Addition-
ally,  the  model  underestimates  the  downward  trends  in
September  in  most  of  the  Beaufort  Sea.  Apparently,  the
performances  of  the  model  are  very  different  under  winter
and  summer  conditions,  which  indicates  that  different

model  error  sources  may  exist  that  dominate  in  different
seasons.

4.    Analysis of model error sources

The disagreement in sea-ice evolution between simula-
tion and observation is the result of a combination of many
underlying  factors,  such as  uncertainties  in  both  the  model
and  observation.  A  further  explanation  of  the  underlying
causes of the difference is important for making advances in
the quality of sea-ice simulations (Notz et al., 2016). As sum-
marized by Zheng and Zhu (2008), model errors mainly res-
ult  from errors  in the parameterization of  the physical  pro-
cesses, from the boundary conditions, and from errors in the
numerical  solution  methods.  For  the  regional  ice−ocean
coupled  model,  the  variables  from the  atmospheric  forcing
and open boundaries in the ocean drive the evolution of the
sea  ice  in  a  certain  way.  To evaluate  the  sources  of  model
error  that  are  related  to  the  atmospheric  forcing  and  the
oceanic  boundaries,  the  sea-ice  extent  is  selected  to  evalu-
ate  the  relationships  between  the  atmospheric/oceanic  for-
cings and the simulated sea-ice evolution and compare them
with the observations.

4.1.    Errors induced by atmospheric forcing variables

The net energy flux (i.e., sensible heat flux, latent heat
flux,  net  longwave  radiation,  net  shortwave  radiation,  and
fraction of absorbed shortwave flux that penetrates into the
ice) from the atmosphere to the ice is one of the key factors
that  determines  the  sea-ice  melting  at  the  surface,  and  in
turn, the Arctic sea-ice cover variability reflects the changes
in  the  atmosphere−ocean  heat  fluxes  (Smedsrud  et  al.,
2010). In addition, it is well known that the air temperature
directly affects the growing and melting process of sea ice.

 

 

Fig. 8.  (a) Locations of the observations from IceBridge in spring of 2009−2012, and (b) a scatterplot of the mean
spring sea-ice thickness between observations and simulations.
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Many studies have proven that gradually increasing air tem-
perature along with shifts in atmospheric circulation corres-
pond  to  sea-ice  advection  and  lead  to  increasingly  open
water  in  the  Arctic  Ocean  (Overland  et  al.,  2008).  There-
fore,  we  investigate  the  relationships  between  the  sea-ice
extent and the air temperature and downward radiation, two
of the most important thermal factors, to determine whether
the model error is induced by the atmospheric forcing vari-
ables and whether the effects from the atmosphere in March
and September are different.

As  the  atmospheric  forcing  of  the  sea-ice  coupled
model, we hope that the variation in the sea-ice cover from
model  simulations  forced  by  the  JRA-25 reanalysis,  which
is assumed to be the “true” atmospheric boundary condition,
is consistent with that from observations. Therefore, the rela-
tionship  between  the  simulated  sea-ice  extent  from  MIT-
gcm and the atmospheric forcing variables from JRA-25 is
expected to be consistent with the relationship between the
observed  sea-ice  extent  and  the  JRA-25  atmospheric  for-
cing variables if the model performs perfectly. Additionally,
the  relationship  between  the  observed  sea-ice  extent  and
ERA-Interim is analyzed to demonstrate the ubiquity of the
expected  relationship.  At  each  grid  point,  the  atmospheric
reanalysis  variables  are  correlated  with  the  simulated  sea-
ice  extent  and  the  observed  one  in  March  and  September
over  the  period  1991−2012.  The  linear  trend  is  removed
from  both  time  series  before  the  correlation  is  computed.
The linear correlation results between the sea-ice extent and
the  air  temperature  at  2  m  from  JRA-25  and  ERA-Interim

over  the  Arctic  Ocean  are  displayed  in Fig.  9. Figures  9a
and d show the  maps  of  the  correlation  between  the  simu-
lated sea-ice extent and the JRA-25 2-m temperature (Simula-
tion  vs.  JRA).  The  spatial  distributions  of  correlations
between  observed  sea-ice  extent  and  atmospheric  reana-
lysis JRA-25 (Observation vs. JRA) or ERA-Interim (Obser-
vation vs.  ERA) are also shown in Fig.  9.  The correlations
either  from  the  JRA-25  or  from  ERA-Interim  show  the
same distributions of positive and negative centers but with
different intensities, which means that the correlation coeffi-
cients  can  represent  how  the  observed  sea-ice  extent
responds to the atmospheric forcings at large scales by particu-
lar  mechanisms.  Furthermore,  the  disagreements  between
“Observation  vs.  JRA”  and  “Observation  vs.  ERA” show
that atmospheric uncertainty influences the evolution of the
sea-ice cover (Yang et al., 2016).

More specifically,  we find that  in September,  statistic-
ally  significant  correlations  between  the  observed  sea-ice
extent and the reanalyzed air temperature at 2 m are negat-
ive over the Arctic basin, which is consistent with the phys-
ical  expectation  that  lower  air  temperature  leads  to  more
extensive sea ice, and vice versa. Additionally, the air temper-
ature at 2 m and the sea-ice extent exhibit a positive correla-
tion  in  the  Greenland−Iceland−Norwegian  seas  and  north-
ern  Canada,  which  corresponds  to  the  Arctic  Oscillation
(AO) atmospheric circulation pattern. During the AO posit-
ive  phase,  the  surface  pressure  is  low  in  the  polar  region,
which  results  in  a  strong  and  consistent  westerly  jet  at  the
mid−high  latitudes  and  keeps  the  cold  Arctic  air  locked  in

 

 

Fig.  9.  Correlations  between  standardized  sea-ice  extent  anomalies  from (a,  d)  simulations  or  (b,  e)  observations,  and  the
standardized 2-m atmospheric temperature anomalies from JRA-25 in (a, b) March and (d, e) September. (c, f) As in (b, e)
but  for  the  2-m  atmospheric  temperature  from  ERA-Interim.  Hatching  covers  areas  that  are  statistically  significant  at  the
95% confidence level. The color bar is unitless (standardized correlation coefficient).
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the polar region. Conversely, the belt of winds becomes distor-
ted in the negative phase of the AO, which allows a south-
ward  penetration  of  colder  Arctic  air  into  the  midlatitudes.
Therefore,  the  circulation  pattern  produces  thermal  effects
from the Arctic basin that are opposite to those from the sur-
rounding regions, which further affects the sea-ice distribu-
tions  in  September.  In  March,  since  the  Arctic  Ocean  is
fully  covered  by  ice,  the  sea-ice  extent  is  only  sensitive  to
the air temperature around the ice edge according to the signi-
ficant  correlation in Fig.  9b;  this  finding is  consistent  with
the physical expectations. Through a comparison of the correl-
ation  results  of  March  and  September,  we  find  that  the
model  reproduces  patterns  similar  to  those  of  observations
but  exhibits  different  degrees  of  correlation  with  observa-
tions. Specifically, in September, the significant correlation
intensity and location and spatial distributions from “Simula-
tion vs. JRA” all match well with those of “Observation vs.
JRA”,  as  shown in Figs.  9d and e.  This  also indicates  that
the model has a good ability to incorporate the information
of atmospheric temperature into the evolution of the sea ice
in  September.  However,  in  March,  the  model  apparently
underestimates  or  even  misses  the  negative  correlation
between the sea-ice extent and air temperature around the Lab-
rador  Sea  and  Bering  Sea.  Under  winter  conditions,  the
model  fails  to  reflect  the  variability  in  air  temperatures,
which  may  induce  significant  disagreements  in  the  sea-ice
concentration at  the ice edges,  as  shown in Fig.  5c.  There-
fore, the model errors induced by the atmospheric temperat-
ure are more prominent in March than in September.

Sandø et al. (2010) assessed the important influence of
atmospheric fluxes and found that the variability and mean
value of the non-solar heat flux are considerably larger than

those of the solar heat flux and that the non-solar compon-
ent dominates the net heat flux. At the same time, Fig. 10 dis-
plays a result similar to that in Fig. 9, with the exception of
the  downward  longwave  radiation.  Again,  the  correlation
maps  from  “Observation  vs.  JRA ”  and  “Observation  vs.
ERA ”  show  similar  patterns.  Physically,  downward  long-
wave radiation exerts thermal effects on the growth and melt-
ing of sea ice similar to those of air temperatures. Likewise,
despite the slight differences, the model reproduces a correla-
tion distribution similar to that of “Observation vs. JRA” in
September. Figures 10d and e show significant negative cor-
relations  over  the  Arctic  basin  and  Alaska.  However,  in
March, the model underestimates the significant negative cor-
relations  between  the  sea-ice  extent  and  downward  long-
wave  radiation,  as  shown  by  comparing Figs.  10a and b;
this underestimation could also be responsible for the devi-
ations  in  the  simulated  sea-ice  concentration  in  both  the
North Atlantic and North Pacific.

In addition to the thermal effects from the air temperat-
ure  and  longwave  radiation,  the  evolution  of  the  sea-ice
extent is significantly affected by the momentum flux. The
wind  not  only  influences  the  sensible  heat  and  the  latent
heat between air and ice but also directly drives the surface
circulation of the ocean and ice cover,  causing ridging and
rafting  of  ice  within  the  pack.  For  example, Serreze  and
Barry (1988) observed that geostrophic wind accounted for
60%−80%  of  the  variance  in  sea-ice  drift  during  the  same
year in the Arctic Ocean. The correlation distributions of the
sea-ice  extent  against  the  10-m  zonal  wind  are  shown  in
Fig. 11. As shown in both Figs. 11e and f, in September, a
stronger westerly wind in the Beaufort Sea (i.e., the weaker
Beaufort  high)  leads  to  more  extensive  sea  ice,  and  vice

 

 

Fig. 10. As in Fig. 9 but for the downward longwave radiation.
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versa. In addition, the westerly winds over Canada have the
opposite impact, as indicated by the strong negative correla-
tion. Therefore, the model can reproduce the physical relation-
ship between the zonal wind and sea-ice extent in Septem-
ber, as shown in Fig. 11d. However, in March, the observed
large-scale  positive  correlation  regions  between  the  ice
extent  and  zonal  wind  (Figs.  11b and c)  weaken  in  the
North Atlantic and disappear in the North Pacific in the simu-
lations (Fig. 11a), which indicates that the model fails to cap-
ture the impacts of the wind in March. Therefore, the model
errors induced by neglecting the influence of winds over the
North  Atlantic  and  North  Pacific  in  March  could  lead  to
uncertainties at the edge of the simulated sea ice.

For the other atmospheric forcing factors, including the
2-m  specific  humidity,  the  10-m  meridional  wind  and  the
shortwave  radiation,  we  find  the  same  phenomenon  as
described  above.  That  is,  there  is  a  similar  correlation  pat-
tern  in  September  and  a  dissimilar  one  in  March  between
the simulations and observations. In summary, the model per-
forms better when reproducing the sea-ice variability accord-
ing to the atmospheric forcing in September but has more defi-
ciencies in March. This finding indicates that atmospheric for-
cing is one of the important sources that induces the large sim-
ulation uncertainties, especially when the model has a poor
response to atmospheric forcing in March.

4.2.    Errors induced by the oceanic boundary

As demonstrated in previous studies (e.g., Fichefet and
Gaspar,  1988; Carmack  et  al.,  2015; Serreze  et  al.,  2019),
the ocean still has a direct impact on the changes in sea-ice
mass with respect to freezing and melting processes. Addition-
ally,  poleward  ocean  heat  transport  has  been  shown  to  be

important  regarding  the  variability  in  the  Arctic  sea-ice
extent  (Sandø et  al.,  2014).  In  this  work,  the  oceanic  open
boundaries of the model feature warm and saline water mov-
ing from the Atlantic to the Arctic Ocean. Therefore, we con-
tinue to  explore the model  errors  induced by the effects  of
the  ocean  boundaries,  including  the  potential  temperature
and  salinity  of  the  open  boundaries  in  the  Atlantic  and
Pacific sectors.

Considering the longer time scale of some processes in
the  ocean,  in Fig.  12,  we  illustrate  the  correlation  coeffi-
cient  between  sea-ice  extent  and  earlier  ocean  temperature
at lead times of 1−12 months for the period 1991−2012 as a
function  of  the  ocean  depth  and  lead  time.  The  monthly
ocean  temperature  of  the  open  boundaries  in  the  Atlantic
and  Pacific  sectors  is  averaged  at  each  level  of  the  model.
Before computation, both the sea-ice extent and ocean temper-
ature  time  series  are  linearly  detrended.  Then,  the  correla-
tion results  are plotted for the upper 1000 m (30 levels)  of
the ocean, including the mixed layer and thermocline. The dis-
tributions of correlation between the observed sea-ice extent
and  ocean  temperature  of  the  open  boundaries  are  referred
as  “Observation  vs.  Oceanic  boundaries ”,  and  the  results
from the  simulated  sea  ice  extent  are  referred  as  “Simula-
tion vs. Oceanic boundaries” in Fig. 12. The positive and neg-
ative  correlations  suggest  that  the  sea  ice  does  respond  to
the  ocean  temperature  from  the  open  boundaries  in  a  cer-
tain  way  with  a  delay  of  several  months.  Physically,  the
upper-ocean temperatures and ice extents are expected to neg-
atively  covary,  since  a  colder  ocean  temperature  leads  to
more extensive sea ice, and vice versa. In March, Fig. 12a sug-
gests  that  the  positive  ocean  temperature  anomalies  in  the
upper  layer  of  the  previous  summer  (i.e.,  ocean  has  an  8-

 

 

Fig. 11. As in Fig. 9 but for the zonal wind at 10 m.
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month lead to ice) are followed by a relatively lower March
sea-ice  extent.  This  result  is  consistent  with Bushuk  et  al.
(2017), who stated that the summer subsurface ocean temper-
ature  anomalies  have  the  potential  to  impact  the  sea-ice
growth rates in the following winter.  With the mixed layer
deepening in the subsequent fall/winter, a significant negat-
ive correlation is found approximately 100 m below the sea
surface.

In September, the sea-ice extent is significantly correl-
ated  with  the  ocean  temperature  of  the  thermocline  with  a
lead time of up to 5 months, and the heat of the thermocline
can influence the extent of sea ice with a shallowing mixed
layer from winter to summer. Generally, the correlation pat-
terns  from  simulations  show  reasonable  agreement  with
those  from  observations  in  March,  but  the  higher  correla-
tion coefficients from simulations show that the model overes-
timates  the  degree  of  statistical  significance  between  lead-

ing ocean temperatures and sea-ice extents. Additionally, in
September,  it  is  obvious  that  the  model  underestimates  the
effects of leading ocean temperatures, although there are sim-
ilar  patterns.  This  result  indicates  that  the  sea-ice  model  is
able to reproduce the influence from the leading surface and
subsurface ocean temperatures on the March sea-ice extent
but  fails  to  reproduce  the  significant  negative  correlation
between  the  thermocline  water  of  the  previous  spring  and
summer and the  sea-ice  extent  in  September.  Therefore,  in
September, the model fails to reasonably incorporate the sea
temperature  into  the  evolution  of  the  sea  ice,  which  is  the
main source of uncertainty in the simulated sea-ice extent.

Salinity  plays  a  more  important  role  than  temperature
regarding ocean density in cold polar regions. The leading cor-
relations  between  salinity  from  oceanic  boundaries  within
the upper 30 levels and the sea-ice extent in simulations and
observations are compared in Fig. 13. In March, the sea-ice

 

 

Fig.  12.  Correlations  between  the  standardized  sea-ice  extent  anomalies  from  (a,  c)  observations  or  (b,  d)
simulations, and the standardized anomalies of the ocean temperature of the ocean boundaries at ≈ 55°N in both the
Atlantic  and  Pacific  sectors  in  (a,  b)  March  and  (c,  d)  September.  Hatching  covers  areas  that  are  statistically
significant at the 95% confidence level. Negative lags indicate the ocean temperature leading the sea-ice extent. The
color bar is unitless (standardized correlation coefficient).
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extent is not significantly correlated with the leading salin-
ity  in  either  simulations  or  observations  (Figs.  13a and b).
In September, similar correlation patterns with significant dif-
ferences in magnitude are depicted in Figs. 13c and d. The
former shows consistent negative correlations, implying that
saltier water is resistant to the formation of ice, which sug-
gests that the influence of the salinity of the upper 600 m of
seawater is strong for up to 12 months prior to the observed
September  ice  cover.  However,  the  simulated  sea-ice
extents  in  September  are  not  significantly  correlated  with
the  salinity  at  all  lead  times.  This  result  indicates  possible
model errors from the inadequate ability of the model to cap-
ture  the  response  of  the  ice  cover  in  September  to  fluctu-
ations in ocean salinity.  For the ocean currents in the open
boundaries,  we  find  the  same  phenomenon  as  described
above.

In conclusion, the coupled ice−ocean model is  reliable
due  to  its  ability  to  capture  the  important  underlying
exchange processes involved in the air−ice and sea−ice inter-
face through their physical and numerical formulations. The
magnitude of the correlations between the sea-ice extent and

forcing preliminarily indicates the degree of influence from
the atmosphere and ocean. By examining whether the model
simulations and observations yield similar significant correla-
tion  results,  we  find  that  the  inherent  uncertainties  in  the
model configuration related to incorporating atmospheric for-
cing  and  oceanic  boundaries,  could  induce  the  simulation
uncertainties.  According to the model’s performance in the
simulation  of  the  trends  and  distributions  of  sea-ice  cover,
the  features  of  the  disagreements  between  the  simulations
and observations in March and September are different. Addi-
tionally,  the  correlation  analyses  indicate  that  the  model
underestimates the atmospheric influence on the sea-ice evolu-
tion  in  March  and  the  ocean  boundaries’ influence  on  the
sea-ice  evolution  in  September.  From  these  seasonal
changes in the simulation uncertainties and the associated sea-
sonal  changes  in  the  ability  of  the  model  to  reflect  the
effects  of  atmospheric  and  oceanic  forcings,  we  suppose
that the main sources of model error are different in March
and  September.  For  example,  in  March,  the  heat  and
momentum fluxes from the atmosphere are not perfectly con-
sidered in the model, which influences the thermodynamics

 

 

Fig. 13. As in Fig. 12 but for salinity.
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and  dynamics  of  the  sea-ice  evolution.  Hence,  the  correla-
tions between the simulated sea-ice extent and atmospheric
forcing  are  underestimated  in  March,  indicating  that  the
model  underestimates  the  response  to  atmospheric  forcing.
In September, the model error mainly comes from the under-
estimation of the correlation between the ocean boundaries
and sea-ice  variations,  which results  in  the  aforementioned
disparate  behaviors  between  the  model  and  the  observa-
tions.

5.    Summary and conclusions

The  dramatic  changes  in  Arctic  sea  ice  have  gained
more  attention  recently,  and  more  importance  has  been
attached to models that can provide a reasonable simulation
of sea ice. In this paper, the observations of sea-ice concentra-
tion  derived  by  different  algorithms  and  sea-ice  thickness
are compared; we present the results of Arctic sea ice simu-
lated by a regional coupled ice−ocean model based on MIT-
gcm over  the  period  1991−2012,  with  the  goal  of  evaluat-
ing  the  spatiotemporal  variability  and  trends  in  Arctic  sea
ice. We further investigate the possible sources of the model
error from the atmospheric and oceanic boundaries. Overall,
there is good agreement in the seasonal-to-interannual variab-
ility  in  the  sea-ice  extent  and  large-scale  ice  distributions.
However,  temporal  and spatial  analysis  shows that  the ice-
coverage simulation performance of the model in March is
quite  different  from  that  in  September.  In  March,  there  is
good agreement between the spatial distributions of sea-ice
concentration of the simulations and observations, while signi-
ficant  differences  in  the  sea-ice  concentration  are  found
only around the ice edges, and the model consistently simu-
lates a higher sea-ice extent that is within the uncertainty of
the observations. Additionally, the model slightly underestim-
ates  the  downward  trends  in  the  March  sea  ice  around  the
southern ice edge. We also find that the model is unable to
capture  the  influence  of  the  atmosphere  in  March,  which
leads  to  uncertainties  in  the  sea-ice  simulation  at  the  ice
edge.  In  September,  although  the  model  simulates  reason-
able sea-ice extent records, there are small-value but large-
area differences between the sea-ice concentrations of the sim-
ulations and observations over the marginal seas of the Arc-
tic Ocean, and some of the differences exceed the limits of
the uncertainty range of the satellite observations. Likewise,
the  downward  trends  in  the  sea-ice  extent  are  underestim-
ated  significantly  in  September,  with  the  simulated  sea  ice
declining at a much lower rate around the marginal seas, espe-
cially  the  Beaufort  Sea.  The  analysis  of  the  sources  of
model  errors shows that  signals  from the ocean are missed
by  the  model  in  September,  which  leads  to  uncertainty  in
the simulations at the marginal seas with low ice concentra-
tion.

In  conclusion,  the  uncertainty  in  simulated  sea  ice  at
low  and  intermediate  concentrations  occupies  most  of  the
September ice cover and the edge of the March ice cover, res-
ulting  in  temporal  and  spatial  disagreements  with  observa-
tions.  However,  it  is  well  known that  the  inherent  noise  in

sea-ice  concentration  retrievals  is  considerable  (Meier  and
Notz, 2010). Consideration of the sea-ice concentration data
based  on  the  Bootstrap,  NASA  Team  and  ASI  algorithms
shows  that  observational  uncertainty  can  explain  some  of
the discrepancies between the model simulations and observa-
tions, which indicates that the aforementioned difference is
acceptable to a certain degree. Furthermore, the model defi-
ciencies from the mechanisms used to represent the effects
of  atmospheric  forcings  and  oceanic  boundary  conditions
might  contribute  to  the  simulation  uncertainties  in  March
and September.  Atmospheric  forcing is  found to  be  one of
the main model error sources in March, while in September,
oceanic boundary conditions are the main source. This sea-
sonal variation in the model error sources could induce differ-
ent  insufficiencies  in the simulation in March and Septem-
ber.  Additionally,  the  model  underestimates  the  seasonal
growth of the ice volume and overestimates the ice volume,
especially  in  the  fall.  The  model  simulates  thicker  ice  in
spring and thinner ice in the fall  due to a deficiency in the
sea-ice  advection.  This  also  demonstrates  the  great  uncer-
tainty exists in the simulations of the sea-ice thickness in dif-
ferent seasons.

In this work, we only focus on the representation of the
sea-ice extent and sea-ice thickness, while other features in
the  model,  such  as  the  ice  drift  and  ice  melt/growth,  are
important  (Holland et  al.,  2010) to the evolution of sea ice
and must be further evaluated. More importantly, both the sea-
sonally  varying  model  error  sources  from  the  atmosphere
and  the  ocean  and  the  inaccuracy  in  the  sea  ice  advection
found in this work can be concluded to be model deficien-
cies.  And  that  can  be  addressed  by  a  more  comprehensive
ensemble method that reflects the model uncertainties in the
regional sea-ice model that should be taken into account dur-
ing the forecast process to improve the simulation results. In
future  work,  based  on  the  uncertainty  information  estim-
ated from the current 1991−2012 modeling period, we can fur-
ther establish an ensemble simulation system in an independ-
ent  period  (e.g.,  2013−2019)  to  evaluate  the  effects  of
model uncertainties on seasonal sea-ice simulation. In addi-
tion,  a  better  understanding  of  the  model  uncertainties  can
contribute  to  more  reliable  background  information  for
ensemble  data  assimilation  to  improve  sea-ice  simulations
(e.g., Lisæter et al., 2003; Yang et al., 2017).

Acknowledgements.    The authors wish to thank two anonym-
ous  reviewers  for  their  very  helpful  comments  and  suggestions.
This  work  was  supported  by  the  National  Key  R&D  Program  of
China  (Grant  No.  2016YFC1402705)  the  Key  Research  Program
of  Frontier  Sciences,  CAS  (Grant  No.  ZDBS-LY-DQC010),  the
National  Natural  Science  Foundation  of  China  (Grant  Nos.
41876012 and 41861144015),  and the Strategic Priority Research
Program  of  the  Chinese  Academy  of  Sciences  (Grant  No.
XDB42000000)

Electronic  supplementary  material: Supplementary  material
is  available  in  the  online  version  of  this  article  at https://doi.org/
10.1007/s00376-020-9223-6.

46 SIMULATED SEA ICE BY MITGCM AND ITS ERROR SOURCE VOLUME 38

 

  

https://doi.org/10.1007/s00376-020-9223-6
https://doi.org/10.1007/s00376-020-9223-6
https://doi.org/10.1007/s00376-020-9223-6
https://doi.org/10.1007/s00376-020-9223-6


REFERENCES
 

Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and
H.  E.  Garcia,  2006: Salinity.  Vol.  2, World  Ocean  Atlas
2005.  NOAA  Atlas  Nesdis  62,  S.  Levitus,  Ed.,  NOAA,
Sliver Spring, Md., 182 pp. 

Bushuk, M., R. Msadek, M. Winton, G. A. Vecchi, R. Gudgel, A.
Rosati, and X. S. Yang, 2017: Skillful regional prediction of
Arctic  sea  ice  on  seasonal  timescales. Geophys.  Res.  Lett.,
44, 4953−4964, https://doi.org/10.1002/2017GL073155. 

Carmack,  E.,  I.  Polyakov,  L.  Padman,  I.  Fer,  and  P.  Winsor,
2015:  Toward  quantifying  the  increasing  role  of  oceanic
heat  in  sea  ice  loss  in  the  new  arctic. Bull.  Amer.  Meteor.
Soc., 96,  2079−2105, https://doi.org/10.1175/BAMS-D-13-
00177.1. 

Cavalieri, D. J., C. L. Parkinson, N. Digirolamo, and A. Ivanoff,
2012:  Intersensor  calibration  between  F13  SSMI  and  F17
SSMIS for global sea ice data records. IEEE Geoscience and
Remote  Sensing  Letters, 9,  233−236, https://doi.org/10.
1109/LGRS.2011.2166754. 

Cohen, J., and Coauthors, 2014: Recent Arctic amplification and
extreme  mid-latitude  weather. Nature  Geoscience, 7,
627−637, https://doi.org/10.1038/ngeo2234. 

Comiso, J. C., 2017: Bootstrap sea ice concentrations from nim-
bus-7  SMMR and DMSP SSM/I-SSMIS,  version  3.  [Indic-
ate  subset  used].  Boulder,  Colorado  USA.  NASA  National
Snow and Ice Data Center Distributed Active Archive Cen-
ter.  [Available  online  from https://nsidc.org/data/nsidc-
0079/versions/3] 

Comiso,  J.  C.,  W.  N.  Meier,  and  R.  Gersten,  2017:  Variability
and trends in the Arctic  Sea ice cover:  Results  from differ-
ent  techniques. J.  Geophys.  Res., 122,  6883−6900,
https://doi.org/10.1002/2017JC012768. 

Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Con-
figuration and performance of the data assimilation system.
Quart. J. Roy. Meteor. Soc., 137, 553−597, https://doi.org/10.
1002/qj.828. 

Eicken,  H.,  2013:  Arctic  sea  ice  needs  better  forecasts. Nature,
497, 431−433, https://doi.org/10.1038/497431a. 

Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Wind-
nagel. 2017: Updated daily. Sea Ice Index, Version 3. [Indic-
ate subset used]. NSIDC, National Snow and Ice Data Cen-
ter.  Boulder,  Colorado,  USA.  [Available  online  from
https://nsidc.org/data/G02135/versions/3] 

Fichefet, T., and P. Gaspar, 1988: A model study of upper ocean-
sea  ice  interactions. J.  Phys.  Oceanogr., 18,  181−195,
https://doi.org/10.1175/1520-0485(1988)018<0181:AMSOUO>
2.0.CO;2. 

Francis, J. A., 2013: The where and when of wetter and drier: Dis-
appearing  Arctic  sea  ice  plays  a  role. Environmental
Research  Letters, 8,  041002, https://doi.org/10.1088/1748-
9326/8/4/041002. 

Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amp-
lification to extreme weather in mid-latitudes. Geophys. Res.
Lett., 39, L06801, https://doi.org/10.1029/2012GL051000. 

Guemas, V., and Coauthors, 2016: A review on Arctic sea-ice pre-
dictability and prediction on seasonal to decadal time-scales.
Quart. J. Roy. Meteor. Soc., 142, 546−561, https://doi.org/10.
1002/qj.2401. 

Hendricks,  S.,  and  R.  Ricker,  2019:  Product  user  guide  &
algorithm specification: AWI CryoSat-2 sea ice thickness (ver-
sion 2.1). [Available online from https://epic.awi.de/id/eprint/

49542/] 

Holland,  M.  M.,  C.  M.  Bitz,  M.  Eby,  and  A.  J.  Weaver,  2001:
The  role  of  ice-ocean  interactions  in  the  variability  of  the
North  Atlantic  Thermohaline  Circulation. J.  Climate, 14,
656−675, https://doi.org/10.1175/1520-0442(2001)014<06
56:TROIOI>2.0.CO;2. 

Holland, M. M., M. C. Serreze, and J. Stroeve, 2010: The sea ice
mass budget of the Arctic and its future change as simulated
by  coupled  climate  models. Climate  Dyn., 34,  185−200,
https://doi.org/10.1007/s00382-008-0493-4. 

Hopsch,  S.,  J.  Cohen,  and K.  Dethloff,  2012:  Analysis  of  a  link
between fall Arctic sea ice concentration and atmospheric pat-
terns  in  the  following  winter. Tellus  A:  Dynamic  Meteoro-
logy and Oceanography, 64, 18624, https://doi.org/10.3402/
tellusa.v64i0.18624. 

Kaleschke, L., C. Lüpkes, T. Vihma, J. Haarpaintner, A. Bochert,
J.  Hartmann,  and G.  Heygster,  2001:  SSM/I sea ice remote
sensing  for  mesoscale  ocean-atmosphere  interaction  ana-
lysis. Canadian  Journal  of  Remote  Sensing, 27,  526−537,
https://doi.org/10.1080/07038992.2001.10854892. 

Kwok, R., and G. F. Cunningham, 2008: ICESat over Arctic sea
ice: Estimation of snow depth and ice thickness. J. Geophys.
Res., 113, C08010, https://doi.org/10.1029/2008JC004753. 

Kwok,  R.,  G.  F.  Cunningham,  M.  Wensnahan,  I.  Rigor,  H.  J.
Zwally, and D. Yi, 2009: Thinning and volume loss of the Arc-
tic Ocean sea ice cover: 2003−2008. J. Geophys. Res., 114,
C07005, https://doi.org/10.1029/2009JC005312. 

Lisæter, K. A., J. Rosanova, and G. Evensen, 2003: Assimilation
of ice concentration in a coupled ice−ocean model, using the
Ensemble  Kalman  filter. Ocean  Dyn., 53,  368−388,
https://doi.org/10.1007/s10236-003-0049-4. 

Liu, J. P., J. A. Curry, H. J. Wang, M. R. Song, and R. M. Hor-
ton, 2012: Impact of declining Arctic sea ice on winter snow-
fall. Proceedings of the National Academy of Sciences of the
United  States  of  America, 109,  4074−4079, https://doi.org/
10.1073/pnas.1114910109. 

Liu, J. P., M. R. Song, R. M. Horton, and Y. Y. Hu, 2013: Redu-
cing spread in climate model projections of a September ice-
free  Arctic. Proceedings  of  the  National  Academy  of  Sci-
ences of the United States of America, 110, 12 571−12 576,
https://doi.org/10.1073/pnas.1219716110. 

Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and
H. E. Garcia, 2006: Temperature. Vol. 1, World Ocean Atlas
2005.  NOAA  Atlas  Nesdis  61,  S.  Levitus,  Ed.,  NOAA,
Sliver Spring, Md., 182 pp. 

Losch,  M.,  D. Menemenlis,  J.  M. Campin,  P.  Heimbach,  and C.
Hill,  2010:  On  the  formulation  of  sea-ice  models.  Part  1:
Effects of different solver implementations and parameteriza-
tions. Ocean  Modelling, 33,  129−144, https://doi.org/10.
1016/j.ocemod.2009.12.008. 

Maykut, G. A., 1982: Large-scale heat exchange and ice produc-
tion in the central Arctic. J. Geophys. Res., 87, 7971−7984,
https://doi.org/10.1029/JC087iC10p07971. 

Meier, W., and D. Notz, 2010: A note on the accuracy and reliabil-
ity  of  satellite-derived  passive  microwave  estimates  of  sea-
ice extent. CliC Arctic sea ice Working Group, Consensus doc-
ument. CLIC International Project Office, Tromsø, Norway.
[Available  online  from https://www.wmo.int/pages/prog/
www/OSY/Meetings/GCW-IM1/GCW_CliC_Sea_ice_Reli-
ability.pdf] 

Menemenlis,  D.,  J.  Campin,  P.  Heimbach,  C.  Hill,  T.  Lee,  A.
Nguyen, M. Schodlok, and H. Zhang, 2008: ECCO2: High res-

JANUARY 2021 ZHENG ET AL. 47

 

  

https://doi.org/10.1002/2017GL073155
https://doi.org/10.1175/BAMS-D-13-00177.1
https://doi.org/10.1175/BAMS-D-13-00177.1
https://doi.org/10.1109/LGRS.2011.2166754
https://doi.org/10.1109/LGRS.2011.2166754
https://doi.org/10.1038/ngeo2234
https://nsidc.org/data/nsidc-0079/versions/3
https://nsidc.org/data/nsidc-0079/versions/3
https://doi.org/10.1002/2017JC012768
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.828
https://doi.org/10.1038/497431a
https://nsidc.org/data/G02135/versions/3
https://doi.org/10.1175/1520-0485(1988)018%3C0181:AMSOUO%3E2.0.CO;2
https://doi.org/10.1175/1520-0485(1988)018%3C0181:AMSOUO%3E2.0.CO;2
https://doi.org/10.1088/1748-9326/8/4/041002
https://doi.org/10.1088/1748-9326/8/4/041002
https://doi.org/10.1029/2012GL051000
https://doi.org/10.1002/qj.2401
https://doi.org/10.1002/qj.2401
https://epic.awi.de/id/eprint/49542/
https://epic.awi.de/id/eprint/49542/
https://doi.org/10.1175/1520-0442(2001)014%3C0656:TROIOI%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014%3C0656:TROIOI%3E2.0.CO;2
https://doi.org/10.1007/s00382-008-0493-4
https://doi.org/10.3402/tellusa.v64i0.18624
https://doi.org/10.3402/tellusa.v64i0.18624
https://doi.org/10.1080/07038992.2001.10854892
https://doi.org/10.1029/2008JC004753
https://doi.org/10.1029/2009JC005312
https://doi.org/10.1007/s10236-003-0049-4
https://doi.org/10.1073/pnas.1114910109
https://doi.org/10.1073/pnas.1114910109
https://doi.org/10.1073/pnas.1219716110
https://doi.org/10.1016/j.ocemod.2009.12.008
https://doi.org/10.1016/j.ocemod.2009.12.008
https://doi.org/10.1029/JC087iC10p07971
https://www.wmo.int/pages/prog/www/OSY/Meetings/GCW-IM1/GCW_CliC_Sea_ice_Reliability.pdf
https://www.wmo.int/pages/prog/www/OSY/Meetings/GCW-IM1/GCW_CliC_Sea_ice_Reliability.pdf
https://www.wmo.int/pages/prog/www/OSY/Meetings/GCW-IM1/GCW_CliC_Sea_ice_Reliability.pdf
https://www.wmo.int/pages/prog/www/OSY/Meetings/GCW-IM1/GCW_CliC_Sea_ice_Reliability.pdf
https://doi.org/10.1002/2017GL073155
https://doi.org/10.1175/BAMS-D-13-00177.1
https://doi.org/10.1175/BAMS-D-13-00177.1
https://doi.org/10.1109/LGRS.2011.2166754
https://doi.org/10.1109/LGRS.2011.2166754
https://doi.org/10.1038/ngeo2234
https://nsidc.org/data/nsidc-0079/versions/3
https://nsidc.org/data/nsidc-0079/versions/3
https://doi.org/10.1002/2017JC012768
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.828
https://doi.org/10.1038/497431a
https://nsidc.org/data/G02135/versions/3
https://doi.org/10.1175/1520-0485(1988)018%3C0181:AMSOUO%3E2.0.CO;2
https://doi.org/10.1175/1520-0485(1988)018%3C0181:AMSOUO%3E2.0.CO;2
https://doi.org/10.1088/1748-9326/8/4/041002
https://doi.org/10.1088/1748-9326/8/4/041002
https://doi.org/10.1029/2012GL051000
https://doi.org/10.1002/qj.2401
https://doi.org/10.1002/qj.2401
https://epic.awi.de/id/eprint/49542/
https://epic.awi.de/id/eprint/49542/
https://doi.org/10.1175/1520-0442(2001)014%3C0656:TROIOI%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014%3C0656:TROIOI%3E2.0.CO;2
https://doi.org/10.1007/s00382-008-0493-4
https://doi.org/10.3402/tellusa.v64i0.18624
https://doi.org/10.3402/tellusa.v64i0.18624
https://doi.org/10.1080/07038992.2001.10854892
https://doi.org/10.1029/2008JC004753
https://doi.org/10.1029/2009JC005312
https://doi.org/10.1007/s10236-003-0049-4
https://doi.org/10.1073/pnas.1114910109
https://doi.org/10.1073/pnas.1114910109
https://doi.org/10.1073/pnas.1219716110
https://doi.org/10.1016/j.ocemod.2009.12.008
https://doi.org/10.1016/j.ocemod.2009.12.008
https://doi.org/10.1029/JC087iC10p07971
https://www.wmo.int/pages/prog/www/OSY/Meetings/GCW-IM1/GCW_CliC_Sea_ice_Reliability.pdf
https://www.wmo.int/pages/prog/www/OSY/Meetings/GCW-IM1/GCW_CliC_Sea_ice_Reliability.pdf
https://www.wmo.int/pages/prog/www/OSY/Meetings/GCW-IM1/GCW_CliC_Sea_ice_Reliability.pdf
https://www.wmo.int/pages/prog/www/OSY/Meetings/GCW-IM1/GCW_CliC_Sea_ice_Reliability.pdf


olution  global  ocean  and  sea  ice  data  synthesis. Mercator
Ocean Quarterly Newsletter, 31, 13−21. 

Miles,  M.  W.,  D.  V.  Divine,  T.  Furevik,  E.  Jansen,  M.  Moros,
and A. E. J. Ogilvie, 2014: A signal of persistent Atlantic mul-
tidecadal  variability  in  Arctic  sea  ice. Geophys.  Res.  Lett.,
41, 463−469, https://doi.org/10.1002/2013GL058084. 

Nguyen, A. T.,  D. Menemenlis,  and R. Kwok, 2011: Arctic ice-
ocean  simulation  with  optimized  model  parameters:
Approach  and  assessment. J.  Geophys.  Res., 116,  C04025,
https://doi.org/10.1029/2010JC006573. 

Notz, D., 2014: Sea-ice extent and its trend provide limited met-
rics of model performance. The Cryosphere, 8, 229−243. 

Notz, D., A. Jahn, M. Holland, E. Hunke, F. Massonnet, J. Stro-
eve, B. Tremblay, and M. Vancoppenolle, 2016: The CMIP6
sea-ice model intercomparison project (SIMIP): Understand-
ing sea ice through climate-model simulations. Geoscientific
Model Development, 9,  3427−3446, https://doi.org/10.5194/
gmd-9-3427-2016. 

Onogi, K., and Coauthors, 2007: The JRA-25 Reanalysis. J. Met-
eor.  Soc.  Japan, 85,  369−432, https://doi.org/10.2151/jmsj.
85.369. 

Overland, J. E., and Coauthors, 2016: Nonlinear response of mid-
latitude  weather  to  the  changing  Arctic. Nature  Climate
Change, 6, 992−999, https://doi.org/10.1038/nclimate3121. 

Overland,  J.  E.,  M. Wang,  and S.  Salo,  2008:  The recent  Arctic
warm period. Tellus A, 60, 589−597, https://doi.org/10.1111/
j.1600-0870.2008.00327.x. 

Regehr,  E.  V.,  C.  M. Hunter,  H.  Caswell,  S.  C.  Amstrup,  and I.
Stirling,  2010:  Survival  and  breeding  of  polar  bears  in  the
southern  Beaufort  Sea  in  relation  to  sea  ice. Journal  of
Animal Ecology, 79, 117−127, https://doi.org/10.1111/j.1365-
2656.2009.01603.x. 

Sandø,  A.  B.,  J.  E.  Ø.  Nilsen,  Y.  Gao,  and  K.  Lohmann,  2010:
Importance of heat transport and local air-sea heat fluxes for
Barents  Sea  climate  variability. J.  Geophys.  Res., 115,
C07013, https://doi.org/10.1029/2009JC005884. 

Sandø,  A.  B.,  Y.  Gao,  and  H.  R.  Langehaug,  2014:  Poleward
ocean  heat  transports,  sea  ice  processes,  and  Arctic  sea  ice
variability  in  NorESM1-M  simulations. J.  Geophys.  Res.,
119, 2095−2108, https://doi.org/10.1002/2013JC009435. 

Sato, K., and J. Inoue, 2018: Comparison of Arctic sea ice thick-
ness and snow depth estimates from CFSR with in situ obser-
vations. Climate Dyn., 50, 289−301, https://doi.org/10.1007/
s00382-017-3607-z. 

Schweiger, A., R. Lindsay, J. L. Zhang, M. Steele, H. Stern, and
R.  Kwok,  2011:  Uncertainty  in  modeled  Arctic  sea  ice
volume. J.  Geophys.  Res., 116,  C00D06, https://doi.org/10.
1029/2011JC007084. 

Serreze, M. C., and R. G. Barry, 1988: Synoptic activity in the Arc-
tic Basin, 1979-85. J. Climate, 1, 1276−1295, https://doi.org/
10.1175/1520-0442(1988)001<1276:SAITAB>2.0.CO;2. 

Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M.
M.  Holland,  2008:  The  emergence  of  surface-based  Arctic
amplification. The  Cryosphere  Discussions, 2,  601−622,
https://doi.org/10.5194/tcd-2-601-2008. 

Serreze,  M.  C.,  A.  P.  Barrett,  A.  D.  Crawford,  and  R.  A.
Woodgate,  2019:  Monthly  variability  in  Bering  Strait
oceanic volume and heat transports, links to atmospheric circu-
lation and ocean temperature, and implications for sea ice con-
ditions. J.  Geophys.  Res., 124,  9317−9337, https://doi.org/
10.1029/2019JC015422. 

SIMIP  Community.,  2020:  Arctic  sea  ice  in  CMIP6. Geophys.
Res.  Let., 47,  e2019GL086749, https://doi.org/10.1029/
2019GL086749. 

Smedsrud, L. H., R. Ingvaldsen, J. E. Ø. qingNilsen, and Ø. Skag-
seth, 2010: Heat in the Barents Sea: Transport, storage, and
surface  fluxes. Ocean  Science, 6,  219−234, https://doi.org/
10.5194/os-6-219-2010. 

Smith, L. C., and S. R. Stephenson, 2013: New Trans-Arctic ship-
ping  routes  navigable  by  midcentury. Proceedings  of  the
National Academy of Sciences of the United States of Amer-
ica, 110,  E1191−E1195, https://doi.org/10.1073/pnas.1214
212110. 

Steele, M., W. Ermold, and J. L. Zhang, 2008: Arctic Ocean sur-
face warming trends over the past 100 years. Geophys. Res.
Lett., 35, L02614, https://doi.org/10.1029/2007GL031651. 

Stroeve, J., and D. Notz, 2015: Insights on past and future sea-ice
evolution from combining observations and models. Global
and Planetary Change, 135, 119−132, https://doi.org/10.1016/
j.gloplacha.2015.10.011. 

Stroeve,  J.  and  W.  N.  Meier.  2016.  Gridded  Observational  Sea
Ice  Thickness  Products,  Version  1.  [Indicate  subset  used].
NSIDC, National Snow and Ice Data Center, Boulder, Color-
ado,  USA.  [Available  online  from https://nsidc.org/data/
NSIDC-0690/versions/1] 

Stroeve,  J.  C.,  M.  C.  Serreze,  M.  M.  Holland,  J.  E.  Kay,  J.
Malanik, and A. P. Barrett, 2012a: The Arctic’s rapidly shrink-
ing  sea  ice  cover:  A  research  synthesis. Climatic  Change,
110, 1005−1027, https://doi.org/10.1007/s10584-011-0101-1. 

Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M.
Holland, and W. N. Meier,  2012b: Trends in Arctic sea ice
extent  from  CMIP5,  CMIP3  and  observations. Geophys.
Res.  Lett., 39,  L16502, https://doi.org/10.1029/2012gl052
676. 

Taylor, K. E., 2001: Summarizing multiple aspects of model per-
formance  in  a  single  diagram. J.  Geophys.  Res., 106,
7183−7192, https://doi.org/10.1029/2000JD900719. 

Tilling, R. L., A. Ridout, A. Shepherd, and D. J. Wingham, 2015:
Increased Arctic sea ice volume after anomalously low melt-
ing in 2013. Nature Geoscience, 8, 643−646, https://doi.org/
10.1038/ngeo2489. 

Yang,  Q.  H.,  and  Coauthors,  2014:  Assimilating  SMOS  sea  ice
thickness into a coupled ice-ocean model using a local SEIK
filter. J.  Geophys.  Res., 119,  6680−6692, https://doi.org/10.
1002/2014JC009963. 

Yang, Q. H., M. Losch, S. N. Losa, T. Jung, and L. Nerger, 2016:
Taking into account atmospheric uncertainty improves sequen-
tial  assimilation  of  SMOS  sea  ice  thickness  data  in  an
ice−ocean model. J. Atmos. Oceanic Technol., 33, 397−407,
https://doi.org/10.1175/JTECH-D-15-0176.1. 

Yang, Q. H., S. N. Losa, M. Losch, J. P. Liu, Z. H. Zhang, L. Ner-
ger, and H. Yang, 2017: Assimilating summer sea-ice concen-
tration into a coupled ice-ocean model using a LSEIK filter.
Annals  of  Glaciology, 56,  38−44, https://doi.org/10.3189/
2015AoG69A740. 

Yi, D., and H. J. Zwally., 2014: Arctic sea ice freeboard and thick-
ness, version 1. [Available online from https://nsidc.org/data/
NSIDC-0393/versions/1]. 

Zheng, F., and J. Zhu, 2008: Balanced multivariate model errors
of an intermediate coupled model for ensemble Kalman fil-
ter  data  assimilation. J.  Geophys.  Res., 113,  C07002,
https://doi.org/10.1029/2007JC004621.

48 SIMULATED SEA ICE BY MITGCM AND ITS ERROR SOURCE VOLUME 38

 

  

https://doi.org/10.1002/2013GL058084
https://doi.org/10.1029/2010JC006573
https://doi.org/10.5194/gmd-9-3427-2016
https://doi.org/10.5194/gmd-9-3427-2016
https://doi.org/10.2151/jmsj.85.369
https://doi.org/10.2151/jmsj.85.369
https://doi.org/10.1038/nclimate3121
https://doi.org/10.1111/j.1600-0870.2008.00327.x
https://doi.org/10.1111/j.1600-0870.2008.00327.x
https://doi.org/10.1111/j.1365-2656.2009.01603.x
https://doi.org/10.1111/j.1365-2656.2009.01603.x
https://doi.org/10.1029/2009JC005884
https://doi.org/10.1002/2013JC009435
https://doi.org/10.1007/s00382-017-3607-z
https://doi.org/10.1007/s00382-017-3607-z
https://doi.org/10.1029/2011JC007084
https://doi.org/10.1029/2011JC007084
https://doi.org/10.1175/1520-0442(1988)001%3C1276:SAITAB%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1988)001%3C1276:SAITAB%3E2.0.CO;2
https://doi.org/10.5194/tcd-2-601-2008
https://doi.org/10.1029/2019JC015422
https://doi.org/10.1029/2019JC015422
https://doi.org/10.1029/2019GL086749
https://doi.org/10.1029/2019GL086749
https://doi.org/10.5194/os-6-219-2010
https://doi.org/10.5194/os-6-219-2010
https://doi.org/10.1073/pnas.1214212110
https://doi.org/10.1073/pnas.1214212110
https://doi.org/10.1029/2007GL031651
https://doi.org/10.1016/j.gloplacha.2015.10.011
https://doi.org/10.1016/j.gloplacha.2015.10.011
https://nsidc.org/data/NSIDC-0690/versions/1
https://nsidc.org/data/NSIDC-0690/versions/1
https://doi.org/10.1007/s10584-011-0101-1
https://doi.org/10.1029/2012gl052676
https://doi.org/10.1029/2012gl052676
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1038/ngeo2489
https://doi.org/10.1038/ngeo2489
https://doi.org/10.1002/2014JC009963
https://doi.org/10.1002/2014JC009963
https://doi.org/10.1175/JTECH-D-15-0176.1
https://doi.org/10.3189/2015AoG69A740
https://doi.org/10.3189/2015AoG69A740
https://nsidc.org/data/NSIDC-0393/versions/1
https://nsidc.org/data/NSIDC-0393/versions/1
https://doi.org/10.1029/2007JC004621
https://doi.org/10.1002/2013GL058084
https://doi.org/10.1029/2010JC006573
https://doi.org/10.5194/gmd-9-3427-2016
https://doi.org/10.5194/gmd-9-3427-2016
https://doi.org/10.2151/jmsj.85.369
https://doi.org/10.2151/jmsj.85.369
https://doi.org/10.1038/nclimate3121
https://doi.org/10.1111/j.1600-0870.2008.00327.x
https://doi.org/10.1111/j.1600-0870.2008.00327.x
https://doi.org/10.1111/j.1365-2656.2009.01603.x
https://doi.org/10.1111/j.1365-2656.2009.01603.x
https://doi.org/10.1029/2009JC005884
https://doi.org/10.1002/2013JC009435
https://doi.org/10.1007/s00382-017-3607-z
https://doi.org/10.1007/s00382-017-3607-z
https://doi.org/10.1029/2011JC007084
https://doi.org/10.1029/2011JC007084
https://doi.org/10.1175/1520-0442(1988)001%3C1276:SAITAB%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1988)001%3C1276:SAITAB%3E2.0.CO;2
https://doi.org/10.5194/tcd-2-601-2008
https://doi.org/10.1029/2019JC015422
https://doi.org/10.1029/2019JC015422
https://doi.org/10.1029/2019GL086749
https://doi.org/10.1029/2019GL086749
https://doi.org/10.5194/os-6-219-2010
https://doi.org/10.5194/os-6-219-2010
https://doi.org/10.1073/pnas.1214212110
https://doi.org/10.1073/pnas.1214212110
https://doi.org/10.1029/2007GL031651
https://doi.org/10.1016/j.gloplacha.2015.10.011
https://doi.org/10.1016/j.gloplacha.2015.10.011
https://nsidc.org/data/NSIDC-0690/versions/1
https://nsidc.org/data/NSIDC-0690/versions/1
https://doi.org/10.1007/s10584-011-0101-1
https://doi.org/10.1029/2012gl052676
https://doi.org/10.1029/2012gl052676
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1038/ngeo2489
https://doi.org/10.1038/ngeo2489
https://doi.org/10.1002/2014JC009963
https://doi.org/10.1002/2014JC009963
https://doi.org/10.1175/JTECH-D-15-0176.1
https://doi.org/10.3189/2015AoG69A740
https://doi.org/10.3189/2015AoG69A740
https://nsidc.org/data/NSIDC-0393/versions/1
https://nsidc.org/data/NSIDC-0393/versions/1
https://doi.org/10.1029/2007JC004621
https://doi.org/10.1002/2013GL058084
https://doi.org/10.1029/2010JC006573
https://doi.org/10.5194/gmd-9-3427-2016
https://doi.org/10.5194/gmd-9-3427-2016
https://doi.org/10.2151/jmsj.85.369
https://doi.org/10.2151/jmsj.85.369
https://doi.org/10.1038/nclimate3121
https://doi.org/10.1111/j.1600-0870.2008.00327.x
https://doi.org/10.1111/j.1600-0870.2008.00327.x
https://doi.org/10.1111/j.1365-2656.2009.01603.x
https://doi.org/10.1111/j.1365-2656.2009.01603.x
https://doi.org/10.1029/2009JC005884
https://doi.org/10.1002/2013JC009435
https://doi.org/10.1007/s00382-017-3607-z
https://doi.org/10.1007/s00382-017-3607-z
https://doi.org/10.1029/2011JC007084
https://doi.org/10.1029/2011JC007084
https://doi.org/10.1175/1520-0442(1988)001%3C1276:SAITAB%3E2.0.CO;2
https://doi.org/10.1175/1520-0442(1988)001%3C1276:SAITAB%3E2.0.CO;2
https://doi.org/10.5194/tcd-2-601-2008
https://doi.org/10.1029/2019JC015422
https://doi.org/10.1029/2019JC015422
https://doi.org/10.1029/2019GL086749
https://doi.org/10.1029/2019GL086749
https://doi.org/10.5194/os-6-219-2010
https://doi.org/10.5194/os-6-219-2010
https://doi.org/10.1073/pnas.1214212110
https://doi.org/10.1073/pnas.1214212110
https://doi.org/10.1029/2007GL031651
https://doi.org/10.1016/j.gloplacha.2015.10.011
https://doi.org/10.1016/j.gloplacha.2015.10.011
https://nsidc.org/data/NSIDC-0690/versions/1
https://nsidc.org/data/NSIDC-0690/versions/1
https://doi.org/10.1007/s10584-011-0101-1
https://doi.org/10.1029/2012gl052676
https://doi.org/10.1029/2012gl052676
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1038/ngeo2489
https://doi.org/10.1038/ngeo2489
https://doi.org/10.1002/2014JC009963
https://doi.org/10.1002/2014JC009963
https://doi.org/10.1175/JTECH-D-15-0176.1
https://doi.org/10.3189/2015AoG69A740
https://doi.org/10.3189/2015AoG69A740
https://nsidc.org/data/NSIDC-0393/versions/1
https://nsidc.org/data/NSIDC-0393/versions/1
https://doi.org/10.1029/2007JC004621

