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ABSTRACT

The soil temperature (ST) is closely related to the surface air temperature (AT), but their coupling may be affected by
other factors. In this study, significant effects of the AT on the underlying ST were found, and the time taken to propagate
downward to 320 cm can be up to 10 months. Besides the AT, the ST is also affected by memory effects—namely, its prior
thermal conditions. At deeper depth (i.e., 320 cm), the effects of the AT from a particular season may be exceeded by the
soil memory effects from the last season. At shallower layers (i.e., < 80 cm), the effects of the AT may be blocked by the
snow cover,  resulting  in  a  poorly  synchronous  correlation  between the  AT and the  ST.  In  northeastern  China,  this  snow
cover blockage mainly occurs in winter and then vanishes in the subsequent spring. Due to the thermal insulation effect of
the snow cover, the winter ST at layers above 80 cm in northeastern China were found to continue to increase even during
the recent global warming hiatus period. These findings may be instructive for better understanding ST variations, as well
as land−atmosphere interactions.
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Article Highlights:

•  Causal impacts from surface air temperature, snow cover, and soil memory, on the soil temperature are revealed.
•  The snow cover in northeastern China led to a continuous warming of the winter soil at shallow layers (≤ 80 cm) in the

warming hiatus period.
•  The soil memory in the deep layer (i.e., 320 cm) was found to play an important role in modulating the soil temperature

variability.
 

 
 

1.    Introduction

Soil  temperature  (ST)  is  a  primary  component  of  the
thermal  regimes  of  land  and  plays  an  important  role  in
land−atmosphere  interaction.  Similar  to  the  oceans,  land
areas can record their early anomalous conditions, which sub-
sequently affect the heat exchange between the land surface

and the overlying atmosphere, making ST an important cli-
mate indicator at seasonal time scales (Hu and Feng, 2004a,
b). As early as in the 1980s, the winter ST was used to pre-
dict  the  precipitation  during  the  flood  season  (Tang  et  al.,
1982, 1987; Tang and Reiter,  1986).  From then on,  under-
standing the variability of ST has received increasing atten-
tion  (Mahanama  et  al.,  2008; Fan,  2009; Xue  et  al.,  2012;
Wu and Zhang, 2014; Yang and Zhang, 2015). Many differ-
ent factors, such as the variations of solar radiation, precipita-
tion,  vegetation,  and  surface  air  temperature  (AT),  have
been  reported  to  be  vital  in  modifying  ST  (Zhang  et  al.,
2001; Beltrami et al., 2005).
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It  is  well  recognized  that  the  ST  is  normally  closely
coupled  with  the  AT,  and  their  temporal  variations  often
exhibit similar characteristics (Beltrami and Kellman, 2003;
Hu and Feng,  2005; Chudinova et  al.,  2006).  This  similar-
ity,  however,  largely  depends  on  the  magnitude  of  the  soil
heat  flux and the  surface  sensible  heat  flux,  which may be
affected  by  meteorological  factors  and  physical  properties
of  the  underlying  surfaces,  such  as  vegetation  cover,  snow
cover,  etc.  As  a  result,  divergent  changes  between  the  AT
and the ST may arise when the heat conduction between the
near-surface atmosphere and the soil becomes relative weak
or disappears (Wang et al., 2018a). Furthermore, in the ver-
tical  downward direction till  deeper soil  depths,  the effects
of the AT on the ST decreases, and the deeper ST may devi-
ate  from  the  shallower  one  due  to  the  stronger  persistence
effects  accumulated  from  preceding  conditions  (Yang  and
Zhang, 2015). Accordingly, although the AT plays an import-
ant role in modulating the variability of the ST, the detailed
processes  are  complex,  and  sometimes  controlled  by  mul-
tiple factors.

In recent years, many researchers have evidenced a slow-
down  in  the  global  mean  surface  temperature  during  the
first decade of the 21st century, known as the global warm-
ing hiatus (Fyfe et  al.,  2016; Medhaug et al.,  2017; Risbey
and Lewandowsky, 2017). Modulation of the decadal variabil-
ity of ocean heat seems to be the explanation behind this phe-
nomenon  (Kosaka  and  Xie,  2013; Trenberth  at  al.,  2014;
Wang  at  al.,  2017).  One  of  the  strongest  pauses  occurred
over  northern Eurasia  in  winter,  and it  seems to  be  associ-
ated  with  the  large-scale  wintertime  cooling  over  Eurasia
that started in the late 1980s (Cohen et al., 2012; Trenberth
at al., 2014). As the largest continent, Eurasia is a broad inter-
face where  the  heat  and water  vapor  transfer  between land
and atmosphere, but the role of the land in this hiatus is not
clear. Did the ST also experience a warming hiatus? If yes,
were there any regional differences? More generally speak-
ing, what are the physical processes responsible for modulat-
ing the ST? How deep can the ST be significantly affected
by  the  signals  from  the  AT?  What  are  the  roles  of  other
factors, such as the snow cover or the ST memory (i.e., the
interseasonal  persistence  of  the  anomalous  ST that  reflects
the  effects  of  the  ST from previous  seasons  on  the  current
ST  variations)?  These  questions  have  not  been  fully
addressed owing to the lack of observational ST records.

In  this  study,  we  collected  in-situ  ST  records  at  mul-
tiple depths over China for a relatively long and continuous
period  (1960−2013).  To  investigate  the  relations  between
the ST records with other  factors,  such as  AT,  snow cover
etc., both linear (time-lagged) correlation analysis and nonlin-
ear  causality  analysis  (convergent  cross  mapping  and  its
time-lagged version) were conducted. It was found that the
AT may significantly  affect  the  ST at  all  the  different  lay-
ers  considered  in  this  study,  but  at  the  deepest  depth  (320
cm) the accumulated memory effects from the previous sea-
sons  may  take  over  and  become  a  more  important  factor.
Affected by the AT, the warming hiatus was revealed in the
winter  ST  over  most  regions  of  China  during  the  recent

global warming hiatus period. In the northeast, however, the
winter  ST  at  shallower  layers  (<  80  cm)  continued  to
increase,  which  may  be  attributable  to  the  thermal  insula-
tion effect of the snow cover. These findings may be help-
ful for a better understanding of ST variabilities, as well as
land−air interactions.

The  rest  of  the  paper  is  organized  as  follows:  In  sec-
tion  2,  we  briefly  introduce  the  data  and  methods  used  in
the study. Causal relationships between the AT and the ST
are reported in section 3, with the memory effects from previ-
ous  seasons  also  considered.  After  a  comparison  of  recent
trends (1998−2013) in the winter AT and ST, the effects of
snow cover and soil memory in modulating the ST are demon-
strated in section 4. Finally, in section 5, we discuss the res-
ults and conclude the paper.

2.    Data and methods

2.1.    Data

The  data  used  in  this  study  were  obtained  from  the
China  Meteorological  Administration.  They  include  the
monthly  mean surface  AT records  (recorded at  a  height  of
1.5 m), the monthly mean ST records at the five layers of 0
cm, 40 cm, 80 cm, 160 cm and 320 cm (ST0, ST40, ST80,
ST160,  ST320,  respectively),  the  sunshine  duration  (SSD),
and the snow depth (SD). All the data cover the period from
1960 to 2013.

Due to the serious lack of long-term ST data, we barely
found enough stations with all meteorological elements recor-
ded. Hence, we used a criterion that, for each element, only
those stations with no more than 5.5% missing data during
1960−2013 were selected. The numbers of selected stations
for the AT, ST0, ST40, ST80, ST160, ST320, SD and SSD
were 2038, 1549, 239, 150, 23, 19, 550 and 1932, respect-
ively. Northeastern China was defined as the region cover-
ing (40°−55°N, 122°−135°E).  The number of  stations with
ST  data  decreased  sharply  from  ST0  to  ST320,  but  there
were  still  eight  stations  for  ST320  in  northeastern  China.
Before analysis, the gaps in the time series caused by the miss-
ing  data  were  filled  using  a  simple  linear  interpolation
algorithm.

2.2.    Methods

2.2.1.    Linear analysis

Pearson  correlation  coefficients  were  calculated  to
identify the linear relations between different variables. The
temporal changes of the correlations between different pairs
of variables were also revealed by linear correlation in a slid-
ing 15-year window, and the time steps of each sliding were
1  year.  In  addition,  within  each  15-year  window,  least-
squares  linear  trends  were  also  fitted  (denoted  as  15-year
trends) to detect turning points of the trends.

2.2.2.    Nonlinear causality analysis

We  used  convergent  cross  mapping  (CCM)  and  its
time-lagged  version  (time-lagged  CCM)  to  identify  vari-
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ables that  cause the variations in ST. This analysis method
is  effective  in  detecting whether  variables  are  coupled in  a
nonlinear system, and their causality (Sugihara et al., 2012;
Wang  et  al.,  2018b; Zhang  et  al.,  2019).  Moreover,  it  can
reveal  the  time  delay  if  the  variables  are  delay-coupled.
Brief  introductions  to  CCM  and  time-lagged  CCM  are
given in the following two subsections.

2.2.2.1.    CCM

Suppose we have two observational variables from a com-
plex  system,  denoted  as X and Y.  CCM considers  that  if Y
causes X, then the information of Y can be encoded in the non-
linear  system  attractor  of X.  Thus,  by  using  an  algorithm
called  cross  mapping,  the  attractor  of X is  able  to  recon-
struct the time series of Y (Sugihara et al., 2012). The cross
mapping from X to Y can be carried out according to the fol-
lowing steps (Tsonis et al., 2018):

MX(ti) =
{
xti , xti−τ0 , . . . , xti−(E−1)τ0

}
(i)  Based on Takens’ theorem (Takens, 1981), we first

use the time series of X (with data length L)  to reconstruct
the nonlinear system attractor of X, which is represented by
the  vector ,  where  “ti”
denotes  any  historical  time  point  in  the  observations, E is
the embedding dimension, and τ0 stands for the time delay.
As  we  know,  the  attractor  of X is  acting  as  the  dynamical
state  of  the  underlying nonlinear  system,  and it  is  encoded
with much information on the temporal evolution of X. The
two parameters E and τ0 can be determined through the sim-
plex  projection  (Sugihara  and  May,  1990),  more  details  of
which  are  provided  in  the  electronic  supplementary  mater-
ial (ESM).

X

X
X

MX(t)
X

MX(ti) ti
wi

X ti

(ii) Before using the attractor of  to estimate Y at time
t,  it is required to find the most similar dynamical states of

 around the time t,  and then Y at  time t can be estimated
through these historical similar states. Thus, the state of  at
time t is  denoted  as  vector  (t denotes  the  expected
time  in  this  cross  mapping)  and  the  state  of  at  any  past
time  is  denoted  as  vector  (  denotes  any  past  time
except t). The weight parameter  that represents the associ-
ated weight between the states of  at time t and  is calcu-
lated as: 

wi =
ui∑E+1

i=1
ui

, (1)

 

ui = exp
{
− d[MX(t),MX(ti)]

d[MX(t),MX(t1)]

}
, (2)

d[MX(t),MX(ti)]
MX(t) MX(ti)

where  denotes  the  Euler  distance between
vectors  and . The most similar state to the time
t will occupy the largest weight.

(iii)  According to Tsonis  et  al.  (2018), Y at  time t can
be estimated by 

Ŷ (t) =
∑E+1

i=1
wiY (ti) . (3)

Then, we can calculate the cross mapping skill (Sugihara et

Ŷ (t)

ρXY

Ŷ (t)

al., 2012) that quantifies how close the estimated value 
is to the real value Y(t). Sugihara et al. (2012) and Tsonis et
al.  (2018) suggested  to  use  the  Pearson  correlation 
between Y(t) and  to quantify the cross mapping skill, as
shown in Eq. (4): 

ρXY = corr.
[
Y (t) , Ŷ (t)

]
. (4)

ρYX

ρXY

ρXY

ρXY ρYX

ρXY

ρXY

ρYX

Likewise, the cross mapping skill from Y to X can also
be  measured  referring  to  the  above  steps,  labeled  as .

 represents  how  well  the  attractor  of X can  be  used  to
reconstruct the time series of Y,  and if  is of high mag-
nitude, then it means that the information of Y is encoded in
the attractor of X through the causal  influence from Y to X
(Sugihara et al., 2012). Sugihara et al. (2012) and Tsonis et
al. (2018) defined the causal inference from  and  as
follows:  (i)  if  is  convergent  when L is  increased,  and

 is statistically significant in the surrogate test, then Y is
suggested  to  be  a  causation  of X.  (ii)  Moreover,  if  is
also convergent when L is increased, and statistically signific-
ant  in  the  surrogate  test,  then  the  causal  relationship
between X and Y is bidirectional (X and Y cause each other).

CCM is an effective method for detecting the causality
in  a  coupled  nonlinear  system;  however,  one  should  note
that there are limitations, especially under the circumstance
of strong coupling. As previously reported (Sugihara et al.,
2012; McCracken  and  Weigel,  2014; Mønster  et  al.,  2016,
2017; Ma  et  al.,  2018),  the  non-zero  cross  mapping  skill
may not reflect the real coupling direction in the presence of
strong coupling or even intermediate coupling. Using CCM,
it may not be easy to distinguish the real causality relations
from the symmetric coupling. Furthermore, the existence of
noise  may  also  reduce  the  cross  mapping  skill.  Therefore,
the  detected  causality  from  the  CCM  needs  to  be  con-
sidered with caution, and its time-lagged version, the time-
lagged CCM, is sometimes required.

2.2.2.2.    Time-lagged CCM

ρXY

Time-lagged CCM performs better in detecting causal-
ity relations in the presence of a strong coupling effect and
random  noise  and  can  further  estimate  the  delay  effect  of
causal interaction, according to Ye et al. (2015). When detect-
ing a causal influence from Y(t + tp)  to X(t)  (tp denotes the
time lag and accepts both 0, positive and negative values) in
a  delayed-coupled  system,  it  is  assumed  that  the  informa-
tion of Y(t + tp) has been encoded to X(t), so that the value
of Y(t + tp)  can  be  reconstructed  from X(t)  (Takens,  1981;
Ye  et  al.,  2015).  Following  the  computation  algorithm  of
the CCM, one can use X(t) to cross map Y(t + tp) with differ-
ent  values  of tp,  and  estimate  the  cross  mapping  skill

(tp).  Previous  studies  (Ye  et  al.,  2015; Wang  et  al.,
2018b)  suggest  that  an  optimal  lag  will  exist  where  the
cross mapping skill reaches its maximum. This optimal lag
is  determined  by  the  delay  time  of  the  dynamical  system
(Ye et al., 2015), and we can use this optimal lag to identify
the  causality  direction  and  the  dynamical  delay  time
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between two coupled variables.

ρXY

ρXY

As  suggested  in Ye  et  al.  (2015),  the  causal  relation-
ship  between  two  variables  can  be  identified  according  to
the following new criterion of causal inference: (i) if the max-
imum of (tp)  occurs  at  a  negative  lag  (i.e., tp <  0),  this
means that the information of Y at the past time is encoded
in the current state of X. In other words, the current state of
X can be used to reconstruct Y at the past time. In this case,
Y causes X; (ii) if the maximum of (tp) occurs at a posit-
ive  lag,  this  means  that  the  information  of Y at  the  future
time is determined by the current state of X. In this case, the
current state of X can be used to reconstruct Y at the future
time, and X causes Y. Based on this new criterion, the time-
lagged CCM can produce robust results of the causality direc-
tions and avoid the weakness of the CCM. Therefore, com-
pared with the causal inference of CCM (without time lag),
this  new  causal  inference  from  time-lagged  CCM  analysis
has  been  found  to  be  more  accurate  in  the  presence  of  a
strong  coupling  effect  and  random  noise  (Ye  et  al.,  2015;
Huang  et  al.,  2020);  see  also  Figs.  S1−S3  in  the  ESM.  In
this  study,  we  apply  the  time-lagged  CCM  to  study  the
causal  relations  between  the  AT  and  the  ST  at  multiple
layers.

3.    Effects  of  AT  on  the  underlying  ST  of
different layers

3.1.    Impact  strengths  and  time  lags  of  the  AT  on  the
underlying ST

The  AT  variability  can  propagate  downward  to  the
deep soil layers (Beltrami and Kellman, 2003; Hu and Feng,
2005; Chudinova et al., 2006), but the signal decays during
the  propagation,  and  the  significance  of  the  AT  effects  on
the  ST  in  deep  layers  is  doubtful.  Compared  to  the  time-
lagged  linear  correlation  analysis  (Fig.  S4  in  the  ESM),
time-lagged  CCM  can  distinguish  the  true  causal  relation-
ship  from  the  phenomenon  of  synchrony  even  if  the  vari-
ables  are  nonlinearly  coupled  (Sugihara  et  al.,  2012; Ye et
al., 2015; Wang et al., 2018b). Before the analysis of the caus-
ality from the AT to the STs, we first tested whether nonlin-
ear  processes  were  reflected  in  the  time  series  of  the  vari-
ables  of  interest.  As  shown  in  Fig.  S5  and  Fig.  S6  in  the
ESM,  using  simplex  projection  (Sugihara  and  May,  1990)
the optimal embedding dimension (E) was calculated. Then,
using the S-map method (Sugihara,  1994)  based on this E,
we found the time series of both the AT and the STs have non-
linear signals, suggesting that nonlinear causal inference ana-
lysis (CCM or its time-lagged version) is necessary. Accord-
ingly,  based  on  the  monthly  anomaly  time  series  (data
length: 648 months), time-lagged CCM was thus employed
to  detect  the  strength  (the  maximum  of  the  cross  mapping
skills  for  different  time  lags  in  time-lagged  CCM)  and  the
time lag of the impacts of the monthly AT on the ST at differ-
ent  layers.  As  shown  in Fig.  1,  the  AT impacts  on  the  ST
are  regionally  different.  With  the  increase  in  depth,  the

impact intensity decays rapidly, but the cross mapping skills
of  the  CCM  at  all  layers  are  statistically  significant  at  the
99% confidence level (first column in Fig. 1). It takes time
for  the  signals  from the  AT to  propagate  downward  to  the
soil layers. At the depth of 40 cm, the responses of the ST to
the AT variability at most stations are either “synchronous”
or have one-month lags (right-hand column in Fig. 1). Only
at several stations in northeastern China and northern Xinji-
ang province is the time taken to propagate downward to 40
cm longer than one month. It is worth noting that the detec-
ted “synchronization” is actually limited by the temporal resol-
ution (i.e., monthly) of the data, as the time-lagged CCM can-
not detect time lags shorter than one month. For more pre-
cise  information,  datasets  with  higher  temporal  resolution
(e.g.,  daily)  are  required.  With  the  depth  increasing,  the
time lags increase from around one month at 40 cm to even
ten months at some stations at 320 cm. Note that the AT and
ST are weakly coupled in northeastern China. The cross map-
ping skills in this region are obviously smaller than in other
regions. This may be a result of the fact that the influences
of  the  AT  take  more  time  to  propagate  downward  to  the
deep  soil  layers,  and  thus  the  intensity  decays  more.
However,  the  mechanisms  for  this  phenomenon  are  still
unclear. It may be related to the soil type, but further stud-
ies are needed.

3.2.    Impacts  of  AT  versus  the  impacts  of  soil  memory
from the previous season

ρXY

Since  the  impacts  of  AT  decay  with  the  increase  in
depth, one may ask whether its impacts still dominate the vari-
ations of the ST at deeper layers. Particularly, in view of the
strong  soil  memory  in  deep  layers,  is  there  a  depth  where
the  effects  of  soil  memory  become  more  important?  To
answer  this  question,  the  impact  intensities  of  the  AT  and
the  soil  memory on the  ST in  different  seasons  were  com-
pared in terms of the CCM coefficient , where Y repres-
ents the ST in the preceding seasons or the AT, while X rep-
resents  the  ST  in  the  considered  season.  Note  that,  due  to
the data resolution (seasonal data, for example, spring series
from 1960 to 2013) required in this  analysis,  we could not
apply  time-lagged  CCM here.  Instead,  we  employed  CCM
and  only  compare  the  AT  effects  of  a  considered  season
with the soil memory effects accumulated from one season
before. Although the CCM coefficients may be affected by
noise or the strength of the coupling, since the true causal-
ity  from the  AT to  the  STs (AT effects)  has  been detected
by the time-lagged CCM (Fig. 1) and the pairwise asymmet-
ric inference (PAI) method (Fig. S7 in the ESM) suggested
by McCracken and Weigel (2014), to some extent the CCM
coefficients  may  reflect  the  relative  intensities  of  the  AT
effects versus the soil memory effects. Figure 2 shows that,
in all seasons, the AT effects are always statistically signific-
ant  at  different  layers,  while  the  soil  memory  effects
become  consistently  significant  only  from  deep  layers  (≥
160 cm) (right-hand column in Fig. 2). With the increase in
depth,  the AT effects  decrease but  the soil  memory effects
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increase.  At  the  depth  of  160 cm,  one can already see  that
effects of the soil memory can exceed those of the AT in sum-
mer  (June−August),  autumn  (September−November)  and
winter  (December−February).  With  further  depth,  i.e.,  at
320 cm, the soil  memory effects eventually exceed the AT
effects  in  all  seasons  and  become  more  important.  It  is
worth  noting  that  the  soil  memory  effects  in  northeastern
China  may  be  stronger,  because  when  excluding  the  sta-
tions  in  northeastern  China  (left-hand  column  in Fig.  2),
the  soil  memory  effects  become  weaker.  At  the  160  cm
layer,  the  soil  memory  effects  are  weaker  than  the  AT
effects  (except  for  the  effects  in  autumn),  and  only  at  the
320  cm layer  are  the  soil  memory  effects  significant  in  all
seasons.

4.    Seasonal  AT  and  ST  trends  during  the
recent global warming hiatus

4.1.    Comparison  of  the  AT  and  ST  trends  in  different
seasons

During the first decade of the 21st century there was a
warming slowdown in the global mean surface temperature.
When different seasons are considered, however, the hiatus
did not occur everywhere. In the last section, significant AT
impacts on the subsurface ST were found at all stations and
all  soil  layers.  Therefore,  the ST trends are supposed to be
similar to the AT trends, regardless of warming or cooling.
As shown in Fig. S8 in the ESM, the spatial distribution of
the  AT  and  ST  trends  are  similar  in  spring,  summer  and

 

 

Fig. 1. Cross mapping skills of the CCM between the AT and the ST at different layers (ST40, ST80, ST160, ST320)
(left-hand  column)  and  the  cross  mapping  lag  for  the  response  of  the  STs  to  the  variations  in  the  AT (right-hand
column;  units:  months).  Cross  mapping  skills  of  the  CCM  at  all  stations  are  statistically  significant  at  the  99%
confidence level.
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autumn.  As  for  winter,  however,  the  cooling  trends  of  the
AT  in  northeastern  China  have  not  been  replicated  by  the
STs  in  this  region.  On  the  contrary,  continuous  warming
trends in the STs from 0 cm to 320 cm can be seen during

the warming hiatus period (Fig. 3).
For a closer look of the trends, the third column of Fig. 3

shows the time series of the winter AT and winter ST at differ-
ent depths averaged over northeastern China. It is clear that

 

 

Fig. 2. Cross mapping skills of the CCM between the STs and (i) the AT (black dashed line) and (ii) the STs in the
previous season (blue dashed line). The right-hand column shows the results with all stations included, while the left-
hand column excludes the stations in northeastern China. Above the red dashed line indicates the greater than 95%
confidence level. MAM, March−May; JJA, June−August; SON, September−October; DJF, December−February.
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they all  have similar trends from 1960, but since 1998, the
trends  between  the  AT  and  the  ST  display  opposite  signs
(Fig. 3). A dramatic increase in ST0 is apparent from 1998
to 2013, and this is mainly attributable to the change in the
observational  infrastructure  in  2005.  Before  2005,  the
winter  surface  ST  was  usually  measured  manually  on  the
bare ground. After the use of automatic measurement instru-
ments in 2005, however, the ST0 was measured automatic-
ally even when the ground was snow covered. Thus, higher
temperatures may be measured after 2005 (Xu et al., 2019).
In spite of this, however, the ST0 still increases after 2005,

and this warming cannot be explained by the change in the
observational  infrastructure.  With  increased  depth,  the  ST
trend  becomes  weaker.  For  the  ST40,  ST80,  ST160  and
ST320  layers,  the  linear  trends  from  1998  to  2013  are
0.544°C (10 yr)−1, 0.472°C (10 yr)−1, 0.071°C (10 yr)−1 and
0.15°C (10 yr)−1,  respectively.  To identify the start  time of
the  warming  trend,  15-year  trends  of  the  ST  were  calcu-
lated. It was found that the trends of ST40 and ST80 experi-
enced a negative-to-positive change at the beginning of the
21st century, while those of ST160 and ST320 have been pos-
itive since the mid-1970s. This implies that the warming of

 

 

Fig. 3. Linear trends of the AT and STs (ST0, ST40, ST80, ST160, ST320) in winter (first column) and spring (second column) from
1998 to 2013. The spatial  averages over northeastern China are shown in the third (winter)  and fourth (spring) columns.  “trend1”
indicates the temperature changes from 1960 to 2013 and “trend2” shows the results from 1998 to 2013. “*” indicates the trends are
statistically  significant  at  the  95% confidence  level.  The  curves  are  the  time series  of  the  anomalous  AT and STs in  northeastern
China (right-hand vertical axis of the panels in the third and fourth columns; units: °C). The bars show the trends calculated from the
sliding 15-year windows [left-hand vertical axis of panels in the third and fourth columns; units: °C (10 yr)−1].
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the soil below 160 cm from 1998 to 2013 may be part of a per-
sistent  warming at  a  longer  time scale.  In  other  words,  the
physical  processes  related  to  the  wintertime  ST  variability
seem to vary with depth.

When spring comes,  the  situation becomes completely
different.  The trend deviations between the AT and the ST
almost disappear in northeastern China. Except for the ST at
320 cm, decreasing trends in ST are found at most stations
in northeastern China, as well as in the spatial averages dur-
ing the warming hiatus period (Fig. 3). The 15-year trends fur-
ther reveal a positive-to-negative change at the beginning of

the 21st century.

4.2.    Potential reasons for the soil warming

To understand the observed warming trend of the ST at
different layers in winter, potential factors including the SD
(the  SD  exceeds  4  cm  in  northeastern  China,  as  shown  in
Fig. S9 in the ESM), the AT, the autumn ST, and the SSD
were first  studied using linear  correlation analysis  (Fig.  4).
Considering the inhomogeneity of the ST0 (see previous sec-
tion),  in  this  section  we  only  focus  on  the  subsurface  ST
from 40 cm to 320 cm. The weak coupling between the AT

 

 

Fig. 4. The curves show the 15-year sliding correlation coefficients between the winter ST and four variables in northeastern China:
the AT (first column), SSD (second column), SD (third column) and autumn ST (fourth column). Above the upper red line or below
the bottom red line indicates the correlation coefficients are statistically significant at the 95% confidence level. The bars show the
correlation coefficients from 1960 to 2013. The solid bars indicate the correlation coefficients are statistically significant at the 95%
confidence level. All correlation coefficients were calculated after removing the trends of the time series.
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and  the  ST  in  northeastern  China  was  reconfirmed  by  the
nonsignificant linear correlation coefficients (first column in
Fig.  4).  The  SSD was  found  to  be  closely  related  with  the
ST40, but the correlation is negative, reflecting indirect rela-
tions between the SSD and the ST40. The effects of AT and
SSD seem to be blocked by the effects of the snow cover, as
significant positive correlations between the ST and the SD
were found at the depths of 40 cm and 80 cm. The 15-year
sliding  correlations  further  indicate  that  the  positive  rela-
tions between the SD and the ST were stable in the past four
decades  and  became  more  significant  after  the  mid-1990s.
This  finding  may  be  related  to  the  insulation  effect  of  the
thicker  snow  cover.  As  reported  in Zhang  (2005),  an
increase in SD by 5 to 15 cm can lead to a 1°C increase in
ground temperature. In the past few decades, large-scale win-
tertime  cooling  and  increased  snowfall  over  Eurasia  have
been  found  (Cohen  et  al.,  2012; Tang  et  al.,  2013; Luo  et
al., 2017). In this context, the SD in northeastern China has
become thicker, and the spatial pattern of the SD increasing
trend (Fig.  S9) was found to be similar  to the ST trends at
the  layers  of  40  cm  and  80  cm.  Moreover,  the  15-year
trends of the SD in northeastern China also reveal a negat-
ive-to-positive  change  at  the  beginning  of  the  21st  century
(figure  not  shown).  These  facts  support  the  inference  that
the thicker snow cover may contribute to the warmer ST at
these two layers.

With the increase in depth, the correlations between the
ST and the SD become nonsignificant,  but the ST memory
gradually starts to dominate. At the depth of 160 cm, the ST
in  autumn  was  found  to  be  closely  related  to  the  ST  in
winter,  but  the  15-year  sliding  correlations  reveal  signific-
ant correlations only before 1980. For the ST at 320 cm, the
memory  from  the  previous  season  seems  to  have  bigger
impacts,  as  the  correlation  coefficients  between  the  ST  in
autumn  and  the  ST  in  winter  are  consistently  significant
over the past few decades. Accordingly, the memory effects
from autumn may be important for the winter ST at deep lay-
ers.  It  is  worth  noting,  however,  that  the  persistent  impact
from autumn seems to mainly contribute to the interannual
variations  of  the  winter  ST.  It  may  not  be  possible  to
explain  the  slightly  increasing  trends  of  the  winter  ST  at
160 cm and 320 cm by the memory effect from autumn, as
the autumn ST at 160 cm and 320 cm does not exhibit increas-
ing trends in northeastern China during the warming hiatus
(Fig. S8).

Due to the time series of the SD (seasonal data) having
nonlinear signals (Fig. S10 in the ESM), to further confirm
the effects of the SD and the soil memory on the variations
in ST at different layers, in the rest of this section the CCM
method was applied (Fig. S11 in the ESM). In line with the
results  of  linear  correlation  analysis  (Fig.  4),  the  causal
effects of the SD on the ST40 and ST80 in winter are remark-
able, with the cross mapping skills nearly converging to 0.4
and  0.3,  respectively.  As  for  the  ST  at  deeper  layers,
however,  the cross  mapping skills  between the SD and the
ST160 (ST320) almost vanish, indicating no causal effects.

To rule out the potential biases induced by the drawbacks of
the CCM (see Methods section), we further applied the PAI
method (McCracken and Weigel, 2014) to check the causal
relations detected by the CCM. As shown in Fig. S12 in the
ESM, the causal effects of the SD on the winter ST at shal-
lower  layers  (i.e.,  40  cm  and  80  cm)  are  confirmed  well,
without  doubt.  Regarding the effect  of  the soil  memory on
the winter ST, the CCM analysis indicates that  the autumn
ST has significant impacts on the winter ST at 320 cm, with
the  cross  mapping  skill  nearly  converging  to  0.75.  As  for
the ST at 160 cm, the CCM analysis does not infer a certain
causality between the autumn ST and the winter ST, as the
cross mapping skill is not convergent, indicating this depth
might be a transition layer where the ST is influenced by the
combined  effects  of  both  the  snow  cover  and  the  soil
memory.

5.    Conclusions

In this study, responses of ST to different factors, includ-
ing the surface AT, the snow cover, as well as the memory
effects,  were analyzed using ST data of different  depths (0
cm  to  320  cm)  over  China.  Beyond  previous  studies  that
were mainly based on linear correlation analyses, this work
investigated  their  relations  using  the  CCM  method  and  its
time-lagged  version,  which  can  reveal  the  causality  rela-
tions  between  the  factors  and  the  ST.  As  one  of  the  most
important  factors,  the  AT  was  found  to  have  significant
impacts on the ST at all the considered depths, but the influ-
ence  becomes  weaker  with  the  increase  in  depth.  The
memory  effects,  on  the  contrary,  become  more  important
with increased depth. At the depth of 320 cm, the thermal con-
ditions  from previous  seasons  were  found to  have stronger
impacts  than  those  from  the  AT  of  the  considered  season,
indicating  a  possible  change  in  the  main  controlling  factor
of the subsurface ST.

At  shallower  layers,  the  effects  of  AT  on  the  ST  are
strong, but they may still be blocked by the change in land
cover, e.g., the snow cover, in which case it is not easy for
the signals from the AT to propagate downward into the soil
and  the  corresponding  effects  are  weakened.  For  instance,
in northeastern China, the wintertime AT exhibited a decreas-
ing  trend  during  the  recent  global  warming  hiatus  period,
while  the  underlying  ST  showed  an  increasing  trend.  This
unexpected  increase  was  attributed  to  the  increasing  SD,
which prevented the loss of heat from the soil to the atmo-
sphere in winter. A detailed CCM analysis further revealed
that the thermal insulation effect of the snow cover signific-
antly affected the ST till the layer at 80 cm. It is worth not-
ing that the snow cover in northeastern China becomes very
thin  in  spring,  and  the  thermal  isolation  effect  very  weak.
The springtime ST showed a decreasing trend from 1998 to
2013, which was consistent with the AT.

These  findings  describe  a  physical  picture  of  how  the
ST  at  different  depths  is  influenced  by  different  factors.
They may be helpful for better understanding ST variabilit-
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ies  and  land−atmosphere  interactions.  However,  there  are
still some issues to be discussed. Firstly, limited by the obser-
vational  ST  dataset,  we  only  focused  here  on  stations  in
China. Whether the conclusions drawn in this study are applic-
able  in  other  regions  needs  further  study  in  the  future.
Secondly,  one  should  note  that  the  CCM  analysis  only
revealed  the  causality  relations  from  the  AT  to  the  ST.  In
the  opposite  direction,  the  influences  of  the  ST  on  the  AT
were  not  detected.  Recently,  the  mystery  of  the  warming
hiatus  has  been  unpacked,  and  the  heat  redistribution  pro-
cesses  in  the  oceans  have  been  reported  as  a  key  reason.
The fact that more energy is transferred and restored in the
deep ocean is suggested as the main explanation for the slow-
down in the warming trend. Similarly, did land-related pro-
cesses also contribute to the warming hiatus? More specific-
ally, since the ST has been considered as an important pre-
dictor  for  future  climate  change  on  seasonal  time  scales,
does  the  ST  affect  the  AT?  And  if  so,  how?  To  address
these  questions  and  further  improve  our  understanding  of
land−atmosphere interactions, further research efforts in the
future remain an urgent necessity.
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