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ABSTRACT

Here, a nonhydrostatic alternative scheme (NAS) is proposed for the grey zone where the nonhydrostatic impact on the
atmosphere  is  evident  but  not  large  enough  to  justify  the  necessity  to  include  an  implicit  nonhydrostatic  solver  in  an
atmospheric dynamical  core.  The NAS is designed to replace this solver,  which can be incorporated into any hydrostatic
models  so  that  existing  well-developed  hydrostatic  models  can  effectively  serve  for  a  longer  time.  Recent  advances  in
machine learning (ML) provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.
In this study, an ML approach called a neural network (NN) was adopted to select leading input features and develop the
NAS.  The  NNs  were  trained  and  evaluated  with  12-day  simulation  results  of  dry  baroclinic-wave  tests  by  the  Weather
Research and Forecasting (WRF) model. The forward time difference of the nonhydrostatic tendency was used as the target
variable, and the five selected features were the nonhydrostatic tendency at the last time step, and four hydrostatic variables
at  the current  step including geopotential  height,  pressure in two different  forms,  and potential  temperature,  respectively.
Finally,  a  practical  NAS  was  developed  with  these  features  and  trained  layer  by  layer  at  a  20-km  horizontal  resolution,
which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency. Corrected
by the  NN-based NAS,  the  improved hydrostatic  solver  at  different  horizontal  resolutions  can run stably for  at  least  one
month and effectively reduce most of the nonhydrostatic errors in terms of system bias, anomaly root-mean-square error,
and the error of the wave spatial pattern, which proves the feasibility and superiority of this scheme.
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Article Highlights:

•  The concept of “nonhydrostatic alternative” is raised here to avoid complicated implicit nonhydrostatic integration.
•  A layer-wise neural network algorithm with five selected leading input features is proposed to develop a nonhydrostatic
alternative scheme.
•   The  scheme  performs  well  in  reproducing  the  nonhydrostatic  tendency  and  correcting  nonhydrostatic  errors  in  the
hydrostatic version of the WRF.

 

 
  

1.    Introduction

The  hydrostatic  equilibrium  approximation,  which

assumes that the upward pressure gradient force is balanced
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by  the  downward  gravitational  pull  of  the  Earth,  is  one  of
the most important numerical assumptions in the atmospheric
dynamical core to simplify the equations for good computa-
tional efficiency and numerical stability. It can alleviate the
restriction  of  timestep  size  and  improve  the  computational
efficiency of models by filtering vertically propagating acous-
tic waves, which carry little energy but seriously restrict the
timestep  size  and  computational  efficiency  (Staniforth  and
Wood,  2008).  Therefore,  the  hydrostatic  approximation  is
adopted in many current atmospheric general circulation mod-
els  (AGCMs) that  serve  as  the  atmospheric  components  of
global climate system models and earth system models. How-
ever, this approximation is reasonable only when horizontal
scales  are  much  larger  than  vertical  scales,  and  no  longer
applicable at scales of a few kilometers following the rapid
development  of  high-performance  computing  architectures
(Smolarkiewicz et al., 2001). There is an emerging trend to
consider  nonhydrostatic  effects  for  better  overall  accuracy,
the convenience of  local  mesh refinement,  and other  bene-
fits.  The  development  of  nonhydrostatic  models  mainly
involves two aspects: the vertical coordinate and time-integra-
tion scheme.

The  vertical  coordinates  that  are  popular  in  the  main-
stream  include  terrain-following  or  hybrid  coordinates
based  on  height z and  pressure,  as  well  as  floating
Lagrangian  coordinates  (Lin,  2004)  and  isentropic  hybrid
coordinates  (Dowling  et al.,  2006; Toy  and  Randall,  2009)
which are only adopted in a few operational atmospheric mod-
els (Kasahara, 1974). A pressure-based coordinate system is
adopted in nearly all hydrostatic models (Wang et al., 2004)
since it  can largely simplify numerical equations and make
theoretical analysis of large-scale motions easier (Sutcliffe,
1947).  However,  since  the  pressure-based  coordinates  are
only  suitable  for  hydrostatic  models,  most  nonhydrostatic
models  (Tomita  and  Satoh,  2004; Skamarock  et al.,  2012;
Zängl  et al.,  2015)  have  to  resort  to  height-based  coordi-
nates. It is simple and straightforward to transform the vertical
coordinates for the primitive atmospheric equations but rela-
tively complicated to perform numerical integration. In addi-
tion, there is an emerging trend to use the hydrostatic-pressure
or  mass  coordinate  system  proposed  by Laprise (1992),
because  it  can  make  nonhydrostatic  equations  take  a  form
that very closely parallels the hydrostatic equations with pres-
sure-based coordinates. Overall, for developing a nonhydro-
static  model  based  on  a  hydrostatic  one,  a  modification  is
often required to significantly alter the equation form for the
vertical coordinate.

Regarding the time-integration scheme, the most promi-
nent  techniques  adopted  in  the  operational  nonhydrostatic
models of the atmosphere can be categorized into two distinct
schemes, Eulerian-based and Lagrangian-based time-integra-
tion  schemes  (Mengaldo  et al.,  2019).  For  Eulerian-based
schemes,  which  mainly  include  split-explicit  schemes
(Klemp  and  Wilhelmson,  1978)  and  horizontally-explicit
and vertically-implicit schemes (Bao et al., 2015), the separa-
tion of scales between the vertical and horizontal directions
is a key factor to speed up the model integration and to econo-

mize computer resources for communication. The main disad-
vantage concerns the difficulty in ensuring computational sta-
bility,  which greatly limits the time step and requires addi-
tional artificial damping. In contrast, Lagrangian schemes, typ-
ified  by  the  semi-implicit  semi-Lagrangian  (SISL)  scheme
(Robert, 1981), perform better in terms of the computational
efficiency  to  maximize  time-to-solution  performance.  A
SISL  scheme  has  been  adopted  in  most  operational  global
nonhydrostatic  numerical  weather  prediction  models  since
the semi-Lagrangian method is unconditionally stable for solv-
ing the transport equation and semi-implicit time discretiza-
tion  can  mitigate  high-speed  gravity  waves  (Davies  et al.,
2005; Wedi  and  Smolarkiewicz,  2009; Wood  et al.,  2014).
The  main  drawback  is  the  lower  parallel  efficiency  and
huge computational cost of the iterative 3-dimensional (3D)
Helmholtz  solver  (Zerroukat  et al.,  2002; Lauritzen  et al.,
2010).

In  summary,  the  development  of  a  nonhydrostatic
model from a hydrostatic one not only requires changing the
vertical coordinate and subsequent formulation but also neces-
sitates the numerical control of vertical acoustic wave propa-
gation  by  implicit  integration,  which  is  computationally
expensive in both development and debugging. Notably, the
nonhydrostatic impact begins to enter the scene but is not sig-
nificantly  remarkable  when  the  horizontal  resolution
reaches  a  relatively  high  level  (O~10  km),  like  a “grey
zone”.  Consequently,  the  hydrostatic  equilibrium  equation
is  used  in  many  current  operational  climate  and  medium-
range weather forecasting models, despite their horizontal res-
olutions falling into this grey zone.

The above discussion raises the question as to whether
alternative  schemes  can  be  developed  to  replace  the  tradi-
tional  nonhydrostatic  solution  approaches  so  that  they  can
be easily incorporated into any hydrostatic models with hori-
zontal  resolutions  in  the  grey zone,  like  a  physical  process
parameterization.  Such alternative schemes are  expected to
eliminate  most  of  the  nonhydrostatic  errors  in  hydrostatic
models without requiring a complicated implicit integration
and  also  serve  to  extend  the  serving  time of  existing  well-
developed  hydrostatic  models,  thereby  saving  the  costs  of
developing  a  new  nonhydrostatic  model  in  the  grey  zone.
Zhang et al. (2017) made an effort to develop an alternative
scheme that incorporated the impacts of nonhydrostatic pertur-
bations into a hydrostatic model based on a linear extrapola-
tion operator. This scheme successfully reduced the nonhydro-
static  errors  of  the  hydrostatic  model,  which  demonstrates
the  feasibility  of  a  nonhydrostatic  alternative  scheme
(NAS).  However,  two  serious  problems  remain  in  the
scheme  even  though  it  is  a  useful  attempt  in  this  aspect.
First, the improvement can only last for several days since a
linear  extrapolation  cannot  maintain  a  nonlinear  evolution
of nonhydrostatic processes for a long time. Second, the linear
extrapolation  operator  requires  the  nonhydrostatic  state  at
the second step in addition to the initial condition (IC) at the
beginning of model integration. Obviously, these two prob-
lems greatly decrease the practicability of the scheme. There-
fore,  a  successful  solution  to  the  above  problems is  key  to
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developing a practical NAS, and the single-step multivariate
nonlinear extrapolation may be a candidate solution.

As a kind of multivariate nonlinear function approxima-
tor,  machine  learning-like  neural  networks  (NNs)  have
grown  in  popularity  in  recent  years  (Li  et al.,  2019; Liu
et al., 2022). This method has been explored for applications
in the development of atmospheric models in terms of physi-
cal process parameterizations and partial differential equation
(PDE) solvers since it can allow for more degrees of freedom
than the traditional polynomial or power-law methods.

Chevallier et al. (2000) and Krasnopolsky et al. (2005)
first  used  NNs  to  emulate  radiation  parameterizations,
which sped up calculations without large sacrifices in predic-
tive accuracy. In the last several years, more recent studies
have emerged that focused on ocean subgrid parameterization
and  atmospheric  convection  parameterization  schemes
based on convection-resolving simulations and super-parame-
terizations with deep NNs (Brenowitz and Bretherton, 2018;
Gentine  et al.,  2018; Beucler  et al.,  2020; Gettelman  et al.,
2021)  and  convolutional  NNs  (Bolton  and  Zanna,  2019;
Han et al., 2020). Additionally, the physics-informed neural
network  (PINN)  (Raissi  and  Karniadakis,  2018; Raissi
et al.,  2019)  and  its  improved  versions  (Dwivedi  et al.,
2019; Jin et al., 2021; Ranade et al., 2021) have been widely
implemented  in  PDE  solvers.  These  methods,  which  can
learn the PDE solutions simultaneously, can alleviate the limi-
tation of training data and can be extended to different condi-
tions without training. However, replacing the total dynamical
core with them greatly increases the costs related to the modi-
fication of the entire model structure; thus, most recent studies
are only based on some simple cases such as incompressible
fluids. Therefore, a reasonable combination of NNs and tradi-
tional  approaches  to  improve  or  even  develop  atmospheric
dynamic cores is more practical and efficient,  for example,
using NNs to solve the nonhydrostatic processes, as in this
study.

This study aims to develop a practical NAS for a hydro-
static dynamical core based on NNs. The remainder of this
is organized as follows. Section 2 introduces the atmospheric
model used in this study and the model output data used for
training.  The  training  and  performance  assessment  of  the
NN  emulators  are  presented  in  section  3.  The  application
and evaluation of  the  improved hydrostatic  solver  with  the
NN-based NAS are described in section 4. Conclusions and
associated discussions are provided in section 5. 

2.    Methodology
 

2.1.    Model and experimental design

The atmospheric model used here is Version 3.9.1.1 of
the  Advanced Research Weather  Research and Forecasting
(WRF-ARW) model (Skamarock and Klemp, 2008) since it
can switch from a hydrostatic solver (HDS) to a nonhydro-
static solver (NHDS) in a remarkably simple fashion. Here,
an idealized 3D baroclinic-wave test case (Jablonowski and
Williamson, 2006) in the idealized package was used as a rep-

resentative, which simulates the evolution of a 3D baroclinic
wave within a baroclinically unstable jet in the northern hemi-
sphere,  under  an f-plane  approximation.  This  test  was
designed  to  target  dry  dynamical  cores  that  are  based  on
either  the  hydrostatic  or  non-hydrostatic  primitive  equa-
tions,  which  can  represent  the  increased  nonhydrostatic
effect  with  horizontal  resolution  (Fig.  S1  in  the  Electronic
Supplementary Materials, ESM).

The original experimental design of this test in the ideal-
ized package for the domain size and resolution is fixed to a
mesh of 41 points in the zonal direction and 81 in the merid-
ional  direction  with  a  horizontal  resolution  of  100  km,
which  is  difficult  to  directly  adjust  in  the  name  list.  To
address the target horizontal resolution that falls in the grey
zone, the ICs fixed in the idealized package should be interpo-
lated to a 10-km resolution (x401×y801).  However,  such a
fine resolution may require high computational and storage
costs.  For  this  consideration,  the  20-km  resolution
(x201×y401)  was  chosen  and  only  the  central  part
(x101×y121) of the domain, which basically covers the key
centers  of  the  strong  westerly  jet  and  temperature  fronts
(Fig. S2), was used to run the test case for the training of the
NASs that were applied and evaluated at the resolutions of
20  km,  10  km,  and  40  km.  In  addition,  50  vertical  layers
and a timestep of 60 s were adopted for all resolutions. Note
that all physical parameterizations were switched off to elimi-
nate the influence of any physical process, in an attempt to
highlight the dynamics itself consistent with the original inten-
tion  of Jablonowski  and  Williamson (2006)  who  proposed
the idealized baroclinic-wave test. All model runs have a dura-
tion of one month.

To  investigate  the  impact  of  reducing  the  domain  size
from  4000  km  ×  8000  km  to  2000  km  ×  2400  km, Fig.  1
shows  the  wave  evolutions  of  two  experiments  running  in
these two different domains with identical setups. In the origi-
nal domain, a vortex system first closes at the surface layer
on Day 3 (Fig. 1a), which is in great agreement with previous
studies (e.g., Blázquez et al., 2013). Subsequently, the vortex
gradually  develops  and  expands  with  its  movement  from
east to west. After an 11-day integration, the wave becomes
stable  and  its  magnitude  stops  growing,  but  the  east-west
movement still  persists (Figs. 1c, d).  Regarding the experi-
ment in the reduced domain, the periodic boundary conditions
in the x-direction and symmetric boundary conditions in the
y-direction significantly slow down the wave evolution. Con-
sequently,  the  vortex  system does  not  close  until  Day 7  or
later (Fig. 1f). Though the magnitude and phase speed have
changed in the reduced domain relative to those in the original
one, the overall wave pattern is still very similar to the original
wave. Besides, the increase in the nonhydrostatic error with
resolution (Fig. S3) is in accordance with that in the tests at
the original domain (Fig. S1), jointly indicating that the exper-
iment in the reduced domain can indeed represent the basic
evolution of baroclinic waves.

The workflow is shown in Fig. 2. First, an NHDS was
used to provide the samples of target variable and input fea-
tures  in  the  first  12  days  for  training  and  developing  the
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NAS.  Then,  the  newly-developed  NAS  was  applied  to
improve  the  HDS  to  correct  the  nonhydrostatic  error.
Finally, these three solvers were compared with each other
for the evaluation of the new scheme. Therefore, all experi-
ments  included  three  runs  by  the  nonhydrostatic,  hydro-
static,  and  improved  hydrostatic  solvers  (IHDS)  of  the
WRF, which are named “NHDR”, “HDR” and “IHDR” for
convenience, respectively.
 

2.2.    Input features and outputs

According  to  the  governing  equations  of  the  WRF
model, the key difference between hydrostatic and nonhydro-

static dynamical core lies in the vertical momentum equation
and  the  prognostic  equation  of  geopotential  height,  which
are written as:
 

∂W
∂t
+ (∇ ·Vw)−g

(
1

1+q
∂p
∂σ
−µ

)
= FW , (1)

 

∂ϕ

∂t
+

1
µ

(V · ∇ϕ−gW) = 0 , (2)

where σ is  the terrain-following coordinate based on HDP;
W = μw is  the  mass-coupled vertical  velocity  in  the  height

 

 

Fig. 1. The horizontal distributions of the surface pressure (hPa) (solid lines) and potential temperature (K) (color shades) from the
baroclinic wave experiments by the nonhydrostatic dynamical core of the WRF using two different domains on (a, e) Day 3, (b, f)
Day 7, (c, g) Day 11, and (d, h) Day 15. The top row shows the simulation results with the original domain (4000 km×8000 km), and
the bottom row with the reduced domain (2000 km×2400 km). Both experiments adopted the same setups (horizontal resolution=20
km, timestep=60 s, etc.) except for the domain size. The two parallel dashed grey lines in each subfigure in the top row mark the
meridional range of the reduction domain. The range of isobars is from 900 hPa to 1005 hPa, with intervals of 15 hPa for the top row
and 5 hPa for the bottom row in the interest of a better view.

 

HDS

(Hydrostatic solver)

NHDS 

(Nonhydrostatic solver)
Model Training

IHDS 

(Improved hydrostatic solver)

NN-based NAS
(Nonhydrostatic alternative scheme)

Comparison

Comparison

Output 

data

Correct 

nonhydrostatic error

 

Fig. 2. The workflow of this study.
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∇ = (∂/∂x,∂/∂y)

coordinate; V =  (U, V,  Ω)  represents  the  mass-coupled  3D
flux-form  velocities  in  the x,  y,  σ directions;

 is the horizontal gradient operator; g is the
gravitational  acceleration; p is  the  pressure; μ is  the  mass
per  unit  area; ϕ is  the  geopotential  height; q is  the  mixing
ratio for moisture; FW is forcing term that arises from model
physics,  turbulent  mixing,  spherical  projections,  and  the
Earth’s rotation.

To solve the acoustic mode in the NHDS Eqs. (1) and
(2)  are  combined  to  form  a  vertically  implicit  equation  by
replacing p in Eq. (1) with an expression for ϕ in accordance
with the hydrostatic relation and state equation, while in the
HDS, Eq. (1) simplifies to: 

g
(

1
1+q

∂p
∂σ
−µ

)
= 0 . (3)

= ∆σ
(
1/(1+q)∂p/∂σ−μ)

Within this simplification, p is first diagnosed using Eq.
(3)  and  then  the  specific  volume  (α),  geopotential  height,
and z-based vertical velocity (w) are diagnosed in turn. Conse-
quently, the elemental feature that determines the impact of
the  nonhydrostatic  integration  is  whether  the  left-side  term
of Eq.  (3)  is  equal  to zero.  Let S ,
which is the product of the vertical spacing (Δσ), and the non-
hydrostatic tendency (i.e., the difference between the vertical
pressure gradient force and gravity) in the form of an HDP-
based σ coordinate.  The inclusion of  vertical  grid size in S
aims to reduce the impact of the heterogeneous vertical layers
on  the  magnitude  of  nonhydrostatic  tendency  at  these  lay-
ers. Thus, S,  at time-level tn+1 (i.e., Sn+1),  is the final target
variable  that  the  NN-based  alternative  scheme  is  going  to
obtain. For optimal performance, the forward time difference
of S, i.e., ΔS = Sn+1 – Sn, is also chosen as an intermediate tar-
get variable for the NAS. Note that all of the NN emulators
discussed below adopt ΔS as the target variable and that the
final  target, Sn+1,  which  works  on  the  NAS  directly,  is
obtained by the calculation from ΔS as predicted by NN emu-
lators.

Since  there  was  little  evidence concerning which vari-
ables significantly influence the variation of S,  most  of the
basic variables of the WRF NHDR, including ϕ, p, μ, Ω, and
potential  temperature θ,  were  outputted  to  be  examined by
NN emulator methods. All of these variables are directly or
indirectly  related  to  the  nonhydrostatic  process.  The “true”

F̃
F̃ F′

F̃
F̃

value of each variable, F, can be represented by the sum of
its hydrostatic basal state  and a nonhydrostatic disturbing
term F' (i.e., F= + ). The hydrostatic value at time-level
tn+1 (i.e., n+1)  and  their  forward  time  difference  (i.e.,
ΔF= n+1-Fn) constitute a list of candidates for input variables
of NN models.

F̃ ϕ̃ p̃

p̃ µ̃

According to the integration sequence in the WRF, the
solutions  of μn+1, Ωn+1,  and θn+1 can  be  easily  and  directly
obtained before the nonhydrostatic integration when the non-
hydrostatic values of ϕn+1 and pn+1, as well as Sn+1 are calcu-
lated.  Therefore,  the  nonhydrostatic  disturbing  terms  of
μn+1, Ωn+1, and θn+1 are zero given a fixed initial value, i.e.,
F = .  However,  the  hydrostatic  values, n+1 and n+1,
which  cannot  be  solved  directly  in  the  NHDS,  requires  an
extra  hydrostatic  diagnosis  to  resolve  them  in  every  small
time step before the nonhydrostatic  integration.  In addition
to  the  above  variables,  the  target  variable  at  the  last  time
step tn (Sn),  was also included in the list  of input variables.
To consider vertical interaction, the vertical gradients of the
above  variables  are  calculated  and  included  in  the  list,
except  for μ,  which does  not  vary  in  the  vertical  direction,
and n+1 whose vertical gradient equals n+1 based on the def-
inition  of  hydrostatic  pressure.  The  complete  list  is  shown
in Table 1. 

2.3.    Training datasets and assessment metrics

The first 12-day outputs of all input and target variables
from NDHR were used for training and assessment. In consid-
eration of computation efficiency, independent vertical pro-
files of the input and target variables were randomly sampled
from the entirety of the data with a varying number per day.
The number of samples selected per day varied from 16,000
in the first 6 days to 100,000 in the last 6 days to maximize
the representativeness of the samples. Because the surface vor-
tex system in the baroclinic-wave test closes on Day 7 when
the nonhydrostatic impact begins to become significant, this
sampling method can increase the proportion of the samples
that  receive  high  nonhydrostatic  impact  from  the  last  6
days, while at the same time not ignoring the samples from
the first 6 days when the system develops. To independently
verify  the  NN emulator,  the  first  5  days  and  Days  7  to  11
were used for training (580,000 elements per vertical layer),
and the remaining days (Days 6 and 12) (232,000 elements)
were used for evaluation. All input and output values were

 

p̃
p̃ µ̃

Table 1. The 19 candidate input features in the NN. For each variable F, the prefixes “δσ” and “Δ” indicate the vertical gradient and time
difference,  respectively.  The superscript “n+1” indicates  the  value  at  time-level tn+1.  Note  that  the  vertical  gradients  of μ and n+1 are
excluded here because μ does not vary in vertical direction and the vertical gradient of n+1 is equal to n+1 based on the definition of
hydrostatic pressure.

Variable Input features

Geopotential height: ϕ ϕ̃n+1 ϕ̃δσ n+1 Δϕ δσΔϕ
Pressure: p p̃n+1 − Δp δσΔp

Potential temperature: θ θ̃
n+1 θ̃δσ n+1 Δθ δσΔθ

Mass per unit area: μ µ̃n+1 − Δμ −
Vertical velocity in σ directions: Ω Ω̃

n+1 Ω̃δσ n+1 ΔΩ δσΔΩ
Nonhydrostatic tendency: S Sn δσSn − −
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normalized to be dimensionless on each vertical layer.
The  assessment  score  of  the  NN  emulators  adopted

here  was  the  coefficient  of  determination, R2,  which  is
defined as one minus the ratio of the mean squared error to
the true variance, given as follows: 

R2 = 1−

∑
(y− ŷ)2∑
(y− ȳ)2

, (4)

ȳ
ŷ

where y represents  the  target  fields  from  NHDR,  is  the
mean of y, and  is the estimated output of the NN. Except
for the training score, i.e., the R2 calculated using the training
dataset,  the  test  score,  the R2 calculated  using  the  test
dataset,  represents a significant metric to assess the perfor-
mance of NNs. 

3.    NN emulations

The  fully  connected  NN  consists  of  several  intercon-
nected levels of nonlinear nodes, which is capable of approxi-
mating  arbitrary  nonlinear  functions  (Rumelhart  et al.,
1986). We used the Python library Keras-Applications 1.0.8
(Chollet, 2015) for all NN experiments. The NN architecture
consists  of  two fully  connected levels  with  eight  nodes for
each experiment, as shown in Fig. 3. The internal activation
algorithm is  the  nonlinear  LeakyReLU activation  function,

i.e., max (0.3x, x), and that for the output level is a linear func-
tion. Each NN emulator was trained over 500 epochs with a
batch size of 10,000 to avoid underfitting where each epoch
is a complete cycle of NN-learning through the full training
data  set.  Ultimately,  the  NN selects  the  best  training result
among the 500-epoch iterations that minimizes the loss func-
tion, i.e., the mean-squared-error.

The above hyperparameter choices were used to fit the
target variable ΔS with all 19 input features across all vertical
layers in the whole-layer NN model. The vertical profiles of
training  and  test  scores  are  shown  in Fig.  4a.  The  training
scores  decrease  along  with  the  vertical  layers,  especially
among the top layers, which sharply turn to negative values

 

⋯
⋯

Fig. 3. Diagram showing the structure of NN.

 

 

ϕ̃ θ̃

Fig.  4. The vertical  profiles  of  the  training  score  (solid  lines)  and  the  test  score  (dashed lines)  of  ΔS from (a)  the
whole-layer NN scheme and (b) the layer-wise scheme. The orange and blue lines in both plots represent the score
from the schemes that adopted all 19 input features. The red and green lines in (b) represent the score from the layer-
wise scheme using the optimal choice of five input features selected (Sn, n+1, δσΔp, Δp, and n+1).
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on the uppermost layer. The performance on test datasets is
a bit inferior to those on training datasets but has a similar ver-
tical distribution. The strong discrepancy in the vertical direc-
tion indicates that it is not a very reasonable way to train the
same NN model on all vertical layers as a whole, which expe-
riences difficulty in optimally fitting the target variables on
each  vertical  layer.  As  a  result,  it  is  necessary  to  train  NN
emulators layer by layer, i.e., to train one emulator per vertical
layer.

As shown in Fig. 4b, the layer-by-layer trained NN mod-
els obviously improve the training and test scores on all verti-
cal layers, with values over 0.8 on nearly all layers. In addi-
tion,  the  strong  discrepancy  along  the  vertical  direction  in
the whole-layer NN model has been also largely eliminated
here. The models perform better on the bottom and top layers
and slightly poorer on the middle layers. These improvements
verify the superiority of the layer-by-layer training method.

However, such an approach is not economical and is eas-
ily  overfitted  when  such  a  large  number  of  input  features
are used in practice. To improve computational efficiency, it
becomes  necessary  to  select  several  leading  input  features
which grasp the key components of nonhydrostatic informa-
tion.  Consequently,  the “permutation  importance” method
was adopted to calculate feature importance and to find the
leading features. This scheme basically works by randomly
re-ordering  the  single  feature  series  and  assessing  how the
shuffled  data  affect  the  accuracy  of  predictions.  Here,  the
importance is defined as the difference between the original
metric and the metric from permutating the feature column
(Breiman, 2001), which are normalized to a sum of 100% to
conduct a fair comparison.

To match the layer-wise scheme, the feature importance

ϕ̃

ϕ θ̃

is also calculated layer by layer. On each vertical layer, all fea-
tures were graded according to their rank in terms of feature
importance. The first-, second-, and third-most important fea-
tures  on  each  layer  score  3,  2,  and  1  points,  respectively,
while the remaining features do not score. Figure 5a shows
the vertical sum of all feature scores and their ranking. The
most  important  feature  is  Δp,  followed  by δσΔp, Sn,  and

n+1. All four features own a large value of importance and
scores over 60, which differ from the others. Subsequently,
δσΔ  and n+1 are two subdominant features, whose impor-
tance  scores  are  over  30.  However,  upon  considering  their
potential interaction and repeatability, the input features can-
not be selected solely based on their ranks of importance in
the  NN,  especially  when  some  of  them  have  close  feature
importance.  Therefore,  further analysis regarding this issue
is necessary.

After  removing  most  of  the  features  with  little  impor-
tance, the above six features were left and used to train the
new layer-wise NN models  and to calculate  feature impor-
tance again. The proportion of their contributions on each ver-
tical  layer  is  shown in Fig.  5b.  The variables  Δp and δσΔp
nearly dominate the variation of the target variable together
in  most  layers,  especially  the  middle  layers,  which  exactly
explains  why  they  are  ranked  at  the  top  in Fig.  5a.  There-
fore,  these  two variables  are  very  essential  to  the  variation
of the nonhydrostatic tendency and are worthy of inclusion
into our NAS.

ϕ̃

θ̃

Among the remaining features, Sn shows its importance
mainly on a few layers around the 6th and the top two lay-
ers. n+1 appears more frequently among the secondary signif-
icant  features  below  the  17th  layer  and  several  layers
around the 40th layer. n+1 becomes significant on the lower-

 

∆p

δσ∆p

Sn

other

 

Fig. 5. (a) The vertical sum of feature ranking scores based on the importance of all 19 input features. The features
that score over 60 are in red, those over 30 are in blue, and the others are in grey. Panel (b) shows the proportion of
the  contribution  of  the  six  leading  features  on  each  vertical  layer.  Only  features  whose  importance  values  are  not
smaller than 5% are shown here, and other less important variables are filled with a blank.
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ϕ
most  3  layers  and  several  layers  around  the  9th  and  41st.
Notably, δσΔ , which originally ranked fifth in Fig. 5a, fails
to play an important role on any vertical layer. Its importance
was  previously  overestimated  under  the  interference  of
other unimportant features.

ϕ̃ θ̃

As a whole, the optimal choice of features on all vertical
layers  includes Sn, n+1, δσΔp,  Δp,  and n+1,  which  are
adopted uniformly but trained separately on each layer in an
NN-based  NAS  for  feature  unification.  Based  on  trial  and
error  of  different  features,  this  particular  scheme  was  also
found optimal under the comprehensive consideration of all
vertical  layers.  The  vertical  profiles  of  scores  for  this
scheme are shown in Fig. 4b. The scheme performs closely
to the one using all 19 features, only slightly worse in all layers
within a reduction of below 0.1.

From  the  perspective  of  the  physical  significance  of
these  leading features, Sn becomes significant  because  it  is
directly the value of the target variable at the previous step
and represents the time memory of nonhydrostatic informa-
tion.  Other  features  like p, ϕ,  and θ are  also  critical  in  the
training because these variables are involved directly in the
implicit, nonhydrostatic integration process (Eqs. 1, 2). In par-
ticular, pressure is the elemental variable that directly deter-
mines the existence of the hydrostatic approximation. Geopo-
tential height is the most relevant prognostic variable in the
nonhydrostatic core but it turns into a diagnostic variable in
the  hydrostatic  core.  Potential  temperature  is  the  common
prognostic variable in both the hydrostatic and nonhydrostatic
cores, which carries a lot of information from the numerical
integration. 

4.    Application  and  evaluation  of  the  NN-
based NAS

This section focuses on the evaluation of the NN emulator
in improving the WRF hydrostatic dynamical core as an alter-
native scheme of the nonhydrostatic solver at different hori-
zontal resolutions of 20 km, 40 km and 10 km. The perfor-
mance of this scheme is critical for its practicality. Here, the
layer-wise  NN  emulators  were  used  in  the  improved  HDS
(IHDS, i.e., the NN-based NAS that is incorporated into the
HDS) to predict ΔS and then Sn+1. Subsequently, the related
nonhydrostatic disturbing variables, including p', α',  and ϕ',
were  successively  diagnosed  based  on  the  definition  of S,
the  state  equation,  and  the  hydrostatic  relation.  Finally,  all
of  the  disturbances  were  added  to  their  hydrostatic  basic
state so that  the original  HDS was corrected and improved
to get close to the NHDS. 

4.1.    Test at a 20-km resolution

Since  the  NNs  were  trained  based  on  the  output  data
from the 20-km test, the performance of the NN-based NAS
should  first  be  evaluated  using  the  same  resolution.  The
nonhydrostatic  errors  of  the  HDS and IHDS are  calculated
to be the difference between the HDR and NHDR and that
between  the  IHDR  and  NHDR,  respectively.  The  perfor-
mances of the HDS and IHDS are evaluated mainly by two

metrics:  the  nonhydrostatic  systematic  error  (i.e.,  bias)
and anomaly root-mean-square error (ARMSE). Both are cal-
culated  in  horizontal  dimensions  on  each  vertical  layer.
Since p and ϕ are two important diagnostic variables of the
alternative  scheme,  their  biases  and  ARMSEs  are  plotted
(Figs. 6, 7).

As Fig.  6a shows, there are positive pressure biases in
the  HDR  relative  to  the  pressure  in  the  NHDR,  which
decrease as the vertical height increases, consistent with the
magnitude of the pressure on each layer. The temporal varia-
tions of these biases are relatively small. The IHDR signifi-
cantly reduces the positive biases in HDR, whose biases are
nearly invisible on all vertical layers in the figure with consid-
erably small values between –0.05 and 0.05 Pa except for a
very few layers near the surface (Fig. 6b). The same patterns
and close values with opposite sign in Figs.  6a and 6c that
present  the  differences  between  the  HDR  and  NHDR  and
those between the IHDR and HDR, respectively, also provide
useful  evidence  for  the  reduction  of  systematic  error  in
IHDR.

The ARMSEs of pressure in the HDR have a vertical dis-
tribution similar to that of the bias, larger in the lower layers
and smaller in the upper layers, but with a much larger magni-
tude and a totally different temporal variation (Fig. 6d). It is
indicative that the random errors dominate the nonhydrostatic
errors of the HDR. These errors increase very slowly in the
first 7 days, within a range of less than 1 Pa, before increasing
sharply and rapidly thereafter on most of the vertical layers
when the vortex closes and develops, consistent with the evo-
lution  of  the  baroclinic  wave  shown  in Fig.  1.  As  stated
above, the reduction of the integration domain slows down
the  wave  evolution,  causing  the  vortex  system  to  finally
close at the surface layer on approximately Day 7 or 8. Appar-
ently,  the  nonhydrostatic  effect  begins  to  work  only  after
the closure of the surface system. This is precisely the reason
why the sampling number chosen in the first 6 days was set
to be a smaller value in subsection 2.3.

With the correction of the NN-based NAS, the IHDR sig-
nificantly reduces the ARMSEs of pressure in the HDR to a
magnitude  of  under  12  Pa  (Fig.  6e).  The  percentage  of
ARMSE  reduction  caused  by  the  NN-based  scheme  in
IHDR is shown in Fig. 6f. It can be observed that in the initial
stage  before  Day  7  that  the  reduction  percentage  is  pretty
small  due  to  the  very  small  difference  of  the  ARMSEs
between the HDR and IHDR. However, after the evolution
for  7  or  8  days,  the  originally  sharply  increased  ARMSEs
are reduced by over 60%, and similar reductions persist for
the following 20 days, further noting that the magnitude of
reduction varies little in the vertical direction.

Regarding ϕ, negative system biases appear in the HDR
on  all  vertical  layers  except  for  a  few  layers  near  the  sur-
face, which become larger after Day 20 (Fig. 7a). Different
from the pressure, most of the time the geopotential height
has  larger  biases  on  upper  layers  and  smaller  biases  on
lower  layers.  The  IHDR  greatly  reduces  these  negative
biases (Fig.  7b) and also decreases the positive biases near
the surface after  day 20 (Fig.  7c),  whose biases  are  almost
invisible  in  the  figure  with  a  narrow  range  of  values  from
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ARMSE (IHDR) - ARMSE (HDR)
ARMSE (HDR)

Fig. 6. Time-σ cross-section of the horizontally averaged systematic biases (the upper row) and anomaly root-mean-
square  error  (the  lower  row)  of  pressure  (Pa)  (a  and  d)  in  the  hydrostatic  solver  and  (b  and  e)  in  the  improved
hydrostatic solver with the NN-based nonhydrostatic alternative scheme relative to the nonhydrostatic solver. Panel
(c) shows the difference between the results of (a) and (b), and (f) is the percentage (%) of changes of (e) relative to

(d),  i.e., .  The  negative  value  (blue)  in  (f)  means  that  the  NN-based  alternative

scheme can reduce nonhydrostatic errors. The biases and errors at the initial time are zero.

 

 

Fig. 7. Same as in Fig. 6, but for the geopotential height (units: m2 s–2).
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–0.1 to 0.1 m2 s–2 before Day 20.
The geopotential  height  also has a  vertical  distribution

of  ARMSEs  (Fig.  7d)  that  differs  from the  pressure  in  the
HDR  (Figs.  6d),  which  are  larger  on  upper  layers  and
smaller on lower layers, consistent with that of the magnitude
of  geopotential  height.  The  ARMSEs  increase  with  time.
They are obviously reduced in the IHDR but have a distribu-
tion similar to that in the HDR (Fig. 7e). Significant improve-
ments appear on most vertical layers from Day 7 to Day 20
and  near  the  surface  before  Day  7  (Fig.  7f).  The  overall
improvements of geopotential height are smaller than those
of  pressure  since  pressure  is  the  most  essential  variable  to
decide  whether  the  hydrostatic  assumption  is  tenable  and
the NN-based NAS is directly correct in the IHDS.

Since  the  closed  vortex  system that  forms  after  Day  7
moves from east to west, the wave patterns of surface pressure
and potential temperature in NHDR on Days 10 and 25 differ
due  to  the  different  locations  of  the  vortex,  thus  they  are
used to assess the performance of the IHDS. Relative to the
NHDR, the  significant  nonhydrostatic  errors  of  pressure  in
HDR  appear  along  the  eastern  and  western  sides  of  the
vortex center with negative and positive values, respectively
(Figs.  8a, c).  The  errors  on  Day  25  are  much  larger  than

those on Day 10. Compared to the HDR, the IHDR obviously
reduces  the  pressure  errors  (Figs.  8b, d).  On  Day  10,  the
IHDR has an error distribution similar to the HDR, with nega-
tive  errors  along  the  eastern  side  and  positive  errors  along
the  western  side  of  the  vortex.  However,  on  Day  25,  the
error pattern in the IHDR is quite different from that in the
HDR, where the positive and negative errors are more irregu-
larly distributed.

Regarding potential temperature, the most significant non-
hydrostatic errors in the HDR are mainly located in the zone
where the potential temperature gradients are large, including
along the northern side of the vortex and to the south of the
domain (Figs. 9a, c). In particular, these errors increase and
further extend to the south on Day 25, compared to those on
Day 10. Apparently, the error distribution in the vortex has
a  totally  reversed  pattern  compared  to  that  of  pressure,
where negative and positive errors appear along the northeast-
ern and northwestern sides of the vortex, respectively. Cor-
rected by the NN-based alternative scheme, the errors in the
IHDR are largely reduced, particularly inside the vortex on
Day 10 (Figs. 9b, d). The improvements in the southern por-
tion  of  the  domain  are  less  significant  on  Day  25  than  on
Day 10.
 

 

 

Fig. 8. The horizontal distributions of the surface pressure errors (Pa) of the (a and c) hydrostatic solver and (b and
d) improved solver with the NN-based nonhydrostatic alternative scheme relative to the nonhydrostatic solver. The
top row shows the simulation results on Day 10 (a and b) and the bottom row on Day 25 (c and d). The dashed
lines represent the isobars (hPa) of the surface layer.
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4.2.    Tests at different resolutions

To investigate the role of the scheme in improving the
HDR  in  the  tests  at  different  resolutions,  two  experiments
are conducted that apply the NAS trained at a horizontal reso-
lution of 20 km to the solvers at 40 km and 10 km, respec-
tively,  and  the  performances  of  these  two  experiments  are
evaluated  in  this  subsection.  It  is  crucial  to  verify  whether
the scheme works well in different resolutions. For simplic-
ity, the results of pressure (Figs. 10–13) are used as an exam-
ple for the evaluation.

For the 40 km-resolution experiment, the overall patterns
and magnitude of the biases and ARMSEs in the HDR are
similar to those tested at a 20-km resolution, where the ARM-
SEs are slightly smaller in the early stage and larger in the
last  stage  (Figs.  10a,  d).  After  incorporating  the  NAS,  the
IHDR at a 40-km resolution also significantly reduces the pos-
itive biases in the HDR (Fig. 10c), where only very slight pos-
itive biases  appear  near  the surface after  Day 7 (Fig.  10b).
The  ARMSEs  are  also  significantly  reduced  to  within  a
value of 3 Pa in the first 24 days (Fig. 10e), and the improve-
ment  is  much  more  obvious  than  that  in  the  20-km  test,
which varies little in the vertical direction. The overall reduc-
tion rates in the 40-km test are nearly 80%, with an overall
increase of 20% compared to the 20-km test (Fig. 10f).

As for the wave patterns of surface pressure on Days 10
and  25,  the  40-km  experiment  produces  error  distributions

in the HDR similar to those by the 20-km experiment, only
with  a  smoother  pattern  of  errors  outside  the  vortex
(Figs.  11a,  c).  After  the  correction  by  the  NAS,  the  IHDR
obviously reduces the pressure errors on both days. Compared
to the HDR where positive and negative errors are distributed
symmetrically inside the vortex, positive errors are more dom-
inant in the IHDR, where only the first and fourth quadrant
of  the  vortex  is  surrounded  by  negative  errors  on  Day  10
and Day 25 (Figs. 11b, d), respectively. Overall, the perfor-
mance of the NAS at a 40-km resolution is much better than
that at a 20-km resolution, which indicates that the NAS can
more effectively reduce the nonhydrostatic errors of a lower-
resolution hydrostatic solver.

For the 10-km resolution experiment, the overall distribu-
tion  of  the  system  biases  in  the  HDR  and  their  significant
correction  by  the  NAS  are  slightly  different  from  those  at
20-km and 40-km resolutions  (Figs.  12a–c).  The ARMSEs
in the HDR show a similar pattern and larger magnitude com-
pared to the 20-km resolution experiment. After incorporating
the NAS, the ARMSEs are also reduced (Fig. 12e). Similar
to  the  20-km  experiment,  the  10-km  experiment  achieves
large improvements from Days 7 to 11 with reduction rates
of over 60%. Subsequently, the improvements are gradually
weakened  after  Day  12,  but  the  error  reduction  rates
rebound to a relatively high level in the last stage (Fig. 12f).

Regarding  the  wave  patterns,  the  error  distribution  in

 

 

Fig. 9. Same as in Fig. 8, but for surface potential temperature (units: K).
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Fig. 10. Same as in Fig. 6, but for the 40-km resolution experiment.
 

 

Fig. 11. Same as in Fig. 8, but for the 40 km-resolution experiment.
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Fig. 12. Same as in Fig. 6, but for the 10-km resolution experiment.
 

 

Fig. 13. Same as in Fig. 8, but for the 10-km resolution experiment.
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the HDR on Day 10 is similar to that of the 20-km experiment
(Fig. 13a). On Day 25, the overall magnitude of the errors is
much larger and the pattern is more tanglesome than that in
the 20-km experiment, particularly near the southern portion
of  the  domain  (y=–800  km)  (Fig.  13c).  Compared  to  the
HDR,  the  IHDR  obviously  reduces  the  pressure  errors
inside and outside the vortex, with a similar error pattern to
that in the HDR (Figs. 13b, d). But the improvement on Day
25  is  slightly  weakened.  Overall,  the  performance  of  the
NAS in the 10-km experiment is  encouragingly promising,
especially  during  the  development  stage  of  the  baroclinic
wave, although it  is not as good as those in the 20-km and
40-km experiments. This is to be expected because the NAS
is  trained  at  a  coarser  resolution  and  may  inevitably  lose
some detailed  information  in  a  high-resolution  information
setting. 

4.3.    Comparisons  between  the  NAS  at  20  km  and
nonhydrostatic  increments  at  different  horizontal
resolutions

To further validate the feasibility of this scheme, the cor-
rections of the hydrostatic solver (IHDR-HDR) by the NAS
at 20 km are also compared to the nonhydrostatic increments
(NIs) that represent the difference between the nonhydrostatic

and  hydrostatic  solvers  (NHDR–HDR)  at  both  40-km  and
10-km resolutions in this subsection. Such comparisons are
based  on  the  fact  that  all  nonhydrostatic  information  is
included  in  NIs.  The  key  point  of  these  comparisons  is  to
examine  whether  the  NAS  at  20  km  can  reproduce  NIs  at
other  resolutions.  Note  that  for  a  uniform  contrast  to  exist
between  two  different  resolutions,  the  simulations  at  the
higher resolution are all interpolated to the lower resolution.
Similar to the previous subsection, only the results of pressure
(Figs. 14, 15) are used as an example for the evaluation.

For  the  experiment  at  a  40-km resolution,  the  NAS at
20 km can reproduce a correction very close to the NI at 40
km  (Figs.  10a, 14a).  The  ARMSE  of  the  NAS  correction
against the NI is also significantly reduced (Fig. 14b) com-
pared  to Fig.  10d.  The  reduction  percentage  in  the  first
seven days, before the surface vortex system closes, is similar
to  the  NAS at  40  km shown in Fig.  10f,  where  only  some
slight deterioration appears on several upper and bottom verti-
cal layers. After evolving for 7 or 8 days, the magnitude of
the  reduction  sharply  increases  with  a  value  over  60%
before Day 20. Subsequently, the reduction is slightly weak-
ened for nearly a week before it rebounds in the last several
days (Fig. 14c).
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Fig. 14. Same as Figs. 10b, e, and f, but for NAS20km – NI40km. All simulation results at 20 km are uniformly interpolated to
40 km.
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Fig. 15. Same as in Figs. 12b, e, and f, but for NAS20km – NI10km. All simulation results at 10 km are uniformly interpolated
to 20 km.
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Regarding  the  10-km  resolution  experiment,  the  NAS
at 20 km also achieves a correction close to the NI at a 10-
km resolution with a reduced ARMSE against the NI shown
in Figs.  12a and c,  respectively.  The  reductions  of  the
ARMSE  also  approached  60%  during  the  developmental
stage  of  the  baroclinic  wave  from  Day  7  to  11.  The  only
exception  is  that  the  reduction  rates  gradually  weakened
from Day 12 before they rebounded slightly in the last several
days (Fig. 15c), which is similar to the NAS at 10 km (Fig.
12f), as was explained in the last subsection. Overall, the cor-
rections  brought  by  the  NAS at  20  km can  well  reproduce
the corrections close to the NIs at both 10-km and 40-km reso-
lutions, which demonstrates that the new scheme can grasp
the key characteristic of nonhydrostatic processes across dif-
ferent resolutions.

In summary,  the overall  performances of  the IHDS on
pressure,  geopotential  height,  and  potential  temperature  in
the  multi-resolution  experiments  prove  that  this  NN-based
NAS can run stably for at least one month, and results in sig-
nificant reductions of the nonhydrostatic errors in the HDR,
no matter what the temporal and spatial dimensions. In partic-
ular, the good performance of the NAS at different resolutions
suggests that ML approaches offer great potential and repre-
sent a bright prospect in improving and developing dynamic
cores of atmospheric models. 

5.    Conclusions and discussion

An NN-based NAS was proposed so that the complicated
process  of  implicit  nonhydrostatic  integration  can  be
avoided,  which is  designed to improve any existing hydro-
static  models.  As  such,  this  method  can  further  extend  the
serving  time  of  well-developed  hydrostatic  models  in  the
“grey  zone” where  the  horizontal  resolution  is  not  fine
enough  to  consider  the  nonhydrostatic  impact  on  model
dynamics despite its visibility.

ϕ̃ θ̃

Fully  connected  NNs were  adopted  to  perform feature
engineering  that  selects  leading  input  features  and  to
develop an NN-based NAS to predict nonhydrostatic tenden-
cies. They were trained and verified using historical data ran-
domly  sampled  from  the  simulation  results  on  the  first
twelve days of the baroclinic wave tests with the nonhydro-
static version of the WRF. The target variable was determined
as the forward time difference of the product of the vertical
spacing and nonhydrostatic tendency in the form under the
HDP  coordinate,  i.e.,  ΔS.  The  five  leading  input  features,
selected  by  the  NNs,  include Sn, n+1,  δσΔp,  Δp,  and n+1.
Finally,  the  NN was  trained,  layer  by  layer,  to  develop  an
NAS,  with  nearly  0.58  million  samples  on  each  vertical
layer.  On  all  vertical  layers,  the  same  five  features  are
adopted with different weightings on various vertical layers.

The  NAS  was  incorporated  into  the  WRF  hydrostatic
dynamical core to correct its nonhydrostatic errors and this
corrected  core  was  applied  to  conduct  the  baroclinic-wave
test which stably integrates for one month. It can well repro-
duce the nonhydrostatic tendency with high training and test
scores on most vertical layers. As shown in the simulations

at  multiple  horizontal  resolutions  (10  km,  20  km,  and  40
km), the scheme can correct the core so that it significantly
and efficiently reduces the system bias, ARMSE, and error
of the wave pattern.

The computational cost of the NAS is at the same level
as  that  of  the  NHDS.  The  time  costs  of  the  three  solvers
demonstrate  little  significant  distinction  mainly  because
both the HDS and NHDS in the WRF are integrated within
the unified framework using the same time-split integration
scheme.  Regarding  the  linkage  between  the  NN  and  the
model,  there  is  still  room  for  improvement.  On  the  one
hand,  since  the  alternative  schemes  are  independently
trained layer by layer, there is great potential for improvement
in terms of computational efficiency in simulations or predic-
tions  through  parallel  computing  in  the  vertical  direction.
On the other hand, many methods exist  which can be used
to improve the computational efficiency of an NN. As a first
step, this study mainly focuses on evaluating the feasibility
and performance of  the  nonhydrostatic  alternative  schemes
based  on  NNs.  The  optimization  of  the  schemes  and  the
prospects  for  increasing  their  computational  efficiency
require further study in the future.

In order to investigate the possibility of further increase
of  the  NN  performance,  except  for Sn, Sn-1 has  been  also
included as an input feature, which represents the nonhydro-
static  tendency  at  more  previous  time  step.  It  did  further
increase the train and test scores of NNs, but failed to further
improve  or  even  degraded  the  performance  of  IHDS.  As  a
consequence, the inclusion of Sn-1 not only failed to further
improve  the  performance  of  the  NN-based  NAS  but  also
increased  the  computational  cost.  It’s  indicated  that Sn is
able to represent the most effective historical memory of the
nonhydrostatic tendency.

This study used a relatively simple way to train an NN,
which is a point-to-point mapping (i.e., using several features
of  a  point  to  predict  the  single  target  variable  of  the  same
point).  This  scheme  considers  little  spatial  interaction,
except that the vertical gradient of each variable at the same
point  was  also  included  in  the  candidate  list  to  represent
part of the vertical interaction. The input features of an NN
at each point only involve the output of basic variables from
the  WRF  at  this  point  and  their  post-processed  variables
(e.g.,  their  vertical  gradients  and  forward  time  differences)
at  the  same point,  which are  fully  independent  of  those on
other points.  In our opinion, using such a mapping method
for the time being is more suitable for the following three rea-
sons.

First,  both the original  nonhydrostatic implicit  integra-
tion (Klemp and Wilhelmson, 1978) and the correction pro-
cess of the NAS at each time step is completed in a single col-
umn,  with  large  vertical  exchanges  but  little  horizontal
ones. Consequently, the influence of horizontal interactions
can be ignored in the early development of the NAS; thus,
its  input features do not include horizontal gradients of the
basic  variables  but  do include their  vertical  gradients.  Sec-
ond,  more  complicated  NNs,  like  convolutional  NNs  (Han
et al., 2020), can be used in the future to include horizontal
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interactions  in  an  NAS  to  further  improve  its  accuracy.
Although  the  cost  of  global  communication  would  be
increased,  many  methods  can  be  used  to  reduce  the  over-
head, such as using a GPU and overlapping communication
and computation, which warrant further study in the future.
Third, instead of the point-to-point mapping method, a col-
umn-to-column  mapping  method  was  also  tested  in  which
the vertical profile at each horizontal grid point is regarded
as  a  whole  as  in  many  previous  studies  (e.g., Rasp  et al.,
2018); however, its training and test scores were remarkably
low—smaller than 0.5. This test indirectly testifies to the prac-
ticability of the point-to-point mapping method in this case.

The good performance of the NASs is encouraging at dif-
ferent resolutions. However, more efforts are needed in the
future to address how to extend the NN-based NAS to differ-
ent cases (i.e., a real atmosphere experiment, etc.) and even
with other hydrostatic models. Besides, the long-term numeri-
cal stability of a high-accuracy NAS is a challenging problem
that warrants further study. Some efforts to improve the stabil-
ity  have been made (Beucler  et al.,  2020; Han et al.,  2020;
Jin  et al.,  2021)  by  adding  physical  constraints  to  the  loss
function of the NN. In addition, for regional tests on the real
atmosphere, how to reasonably deal with the lateral boundary
conditions in the NAS is also challenging.
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