
1

1 Fidelity of the APHRODITE Dataset in Representation 

2 of Extreme Precipitation over Central Asia

3 Sheng Lai1,2, Zuowei Xie2, Cholaw Bueh2 and Yuanfa Gong1

4 1 College of Atmospheric Science, Chengdu University of Information Technology, 

5 Chengdu 610225, China

6 2 International Center for Climate and Environment Sciences, Institute of Atmospheric 

7 Physics, Chinese Academy of Sciences, Beijing 100029, China

8 ABSTRACT

9 Using rain-gauge-observation daily precipitation data from the Global Historical 

10 Climatology Network (V3.25) and the Chinese surface daily climate dataset (V3.0), this 

11 study investigates the fidelity of the AHPRODITE dataset in representing extreme 

12 precipitation, in terms of the extreme precipitation threshold value, occurrence number, 

13 probability of detection and extremal dependence index during the cool (October to April) 

14 and warm (May to September) seasons in Central Asia during 1961–1990. The distribution 

15 of extreme precipitation is characterized by large extreme precipitation threshold values 

16 and high occurrence numbers over the mountainous areas. The APHRODITE dataset is 

17 highly correlated with the gauge-observation precipitation data and can reproduce the 

18 spatial distributions of the extreme precipitation threshold value and total occurrence 

19 number. However, APHRODITE generally underestimates the extreme precipitation 

20 threshold values, while it overestimates the total numbers of extreme precipitation events, 

21 particularly over the mountainous areas. These biases can be attributed to the 
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22 overestimation of light rainfall and the underestimation of heavy rainfall induced by the 

23 rainfall distribution-based interpolation. Such deficits are more evident for the warm 

24 season with respect to the cool season, and thus the biases are more pronounced in the 

25 warm season than in the cool season. The probability of detection and extremal dependence 

26 index reveal that APHRODITE has a good capability of detecting extreme precipitation, 

27 particularly in the cool season.
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30 Article Highlights:

31  APHRODITE can reproduce the spatial distributions of the extreme precipitation 

32 threshold value and total occurrence number.

33   APHRODITE underestimates the extreme precipitation threshold values and 

34 overestimates the total numbers of the extreme precipitation.

35  The warm season features stronger shift of precipitation distribution “spectrum” to 

36 smaller amplitudes resulting in higher biases with respect to the cool season.

37 1. Introduction

38 Human-induced climate change has increased the occurrence and intensity of extreme 

39 weather and climate events that cause huge losses to human society and natural ecosystems 

40 (Trenberth et al., 2015). The arid and semi-arid regions—which are characterized by rare 

41 precipitation, strong evaporation and fragile natural ecosystems—are experiencing more 
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42 drastic climate change compared with global climate change (Chen et al., 2013; Hulme, 

43 1996; Lioubimtseva and Henebry, 2009). A flurry of new studies has shown a statistically 

44 significant warming trend of 0.6 ℃  per 10 yr for the arid region in northwestern China 

45 since the beginning of the twenty-first century, which is nearly five times the global 

46 warming trend of 0.13 °C per 10 yr (Wei and Wang, 2013; Hu et al., 2014). Furthermore, 

47 this evident warming trend is accompanied by increased precipitation and extreme rainfall 

48 events over the arid and semi-arid areas (Xie et al., 2018; Song and Bai, 2016; Donat et al., 

49 2016; Chaney et al., 2014).

50 Central Asia extends from the Caspian Sea in the west to northwestern China, and 

51 includes of two of the world’s nine arid and semi-arid regions (Hulme, 1996). Hu et al. 

52 (2017) and Chen et al. (2018) found that precipitation exhibits an increasing trend over 

53 Xinjiang, whereas a decreasing trend over five states in Central Asia. Extreme precipitation 

54 accounts for 41.9% of the annual precipitation in the Tianshan Mountains (Yang, 2003) 

55 and is therefore one of the key factors affecting the security of water resources (Eekhout et 

56 al., 2018) and the stability of fragile ecosystems (Pueppke et al., 2018; Holmgren et al., 

57 2006) in Central Asia. Zhang et al. (2017) found that the frequency and intensity of extreme 

58 precipitation increased significantly during 1938–2005 over Central Asia. Extreme 

59 precipitation in Xinjiang also showed a significant increasing trend in both frequency and 

60 intensity (Yang, 2003; Qi et al., 2015; Li et al., 2015). Owing to the increasing trend of 

61 extreme precipitation and its dominant contribution to the annual precipitation, it is 

62 important to systematically investigate the daily extreme precipitation over Central Asia, 

63 including Xinjiang.
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64 Given that Central Asia features a complicated topography and the predominant 

65 rainfall distribution over the mountains (Hu et al., 2016; Guo et al., 2017), a high-resolution 

66 gridded data or a large number of gauge-observation data is necessarily required to 

67 delineate extreme precipitation properties over Central Asia. However, the gauge-

68 observation daily precipitation data from meteorological stations of the Global Historical 

69 Climatology Network Daily (GHCN-D) is sparse and has declined substantially since 1991 

70 over Central Asia due to the collapse of the Soviet Union (Hu et al., 2016; Zhang et al., 

71 2017). The Asian Precipitation - Highly-Resolved Observational Data Integration Towards 

72 Evaluation (APHRODITE) precipitation dataset is the only long-term (1950–2015) daily 

73 gridded precipitation dataset for Eurasia and is interpolated from gauge-observation data 

74 (Yatagai et al., 2012). Although the faithfulness of APHRODITE precipitation data has 

75 been noted for different regions of the world, the studies were primarily based on monthly 

76 mean (Yatagai et al., 2012), index-based (Villafuerte II and Matsumoto, 2015; Singh and 

77 Qin, 2019) comparisons, or the frequency of fixed precipitation values (Han and Zhou, 

78 2010; He et al., 2019). We try to assess the daily extreme precipitation from the 

79 APHRODITE dataset with the gauge-observation data for the period over 1960-1990. 

80 Since the APHRODITE dataset incorporates most gauge-observation data, it is hard to find 

81 gauge-observation data independent from the APRHODITE dataset. Therefore, this study 

82 is an analysis of the assimilation technique rather than a validation of the APHRODITE 

83 dataset relative to an independent ground truth. We hope the result could provide some 

84 clues for the improvement of algorithms and some helpful information for scientists. 

85 Previous studies have mainly focused on the faithfulness of gridded data in terms of 

86 error indices and precipitation hit bias. This study aims to evaluate daily extreme 
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87 precipitation from the APHRODITE dataset over Central Asia, including Xinjiang, over 

88 the 30-base-year period of 1961–1990 in terms of the extreme precipitation threshold value 

89 and total number of extreme precipitation events. Their differences are explained on the 

90 basis of precipitation error. The overall performance of APHRODITE for extreme 

91 precipitation is given by the probability of detection (POD) and the extremal dependence 

92 index (EDI) (Ferro and Stephenson, 2011). The remainder of this paper is organized as 

93 follows. Section 2 describes the data and analysis methods. Section 3 reports the results. 

94 Section 4 provides a discussion followed by a summary of the results in section 5. 

95 2. Data and Methods

96 2.1 Study Area

97 Figure 1 shows the location of the study area of Central Asia with topography features 

98 and the distribution of the meteorological stations. In this study, Central Asia encompasses 

99 five countries, namely Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan, 

100 and Xinjiang province in northwestern China. Central Asia is geographically high in the 

101 east and low in the west. The topography mainly includes deserts, plains, hills and 

102 mountains. The average altitude of the Pamirs Plateau and Tianshan Mountains is above 

103 4000 m. Three major rivers—the Syr Darya, the Amu Darya and the Ili rivers—originate 

104 from the mountainous regions and flow into the lowlands and basins in the west. The 

105 climate of Central Asia is characterized by a typical continental climate (Df/Ds) with 

106 annual precipitation ranging from 700 to 1200 mm in the mountainous areas, and semi-arid 

107 (BSk) and desert (BWk) climates with annual precipitation of about 150 mm in the 

108 lowlands and basins (Beck et al., 2018).
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109 2.2 Data

110 2.2.1 Gauge-observation Precipitation Datasets

111 The observed precipitation data come from two rain-gauge-observation datasets, 

112 which are GHCN-D Version 3.25 and the dataset of daily climate data from Chinese 

113 meteorological stations for global exchange version 3.0. The GHCN-D V3.25 is an 

114 integrated database of daily climate summarized from land surface stations across the globe, 

115 which contains records from over 100,000 stations in 180 countries and territories. The 

116 data undergo a series of quality checks before they are collected into the GHCN-D database. 

117 However, the GHCN-D dataset includes only 18 meteorological stations in Xinjiang, which 

118 is less than the number of Chinese national meteorological stations. To incorporate more 

119 meteorological stations, we adopt daily precipitation data from the Chinese surface stations 

120 for global exchange version 3.0 provided by the China Meteorological Data Service Center 

121 (CMDC) (https://data.cma.cn/en/). After strict quality control by manually rechecking and 

122 rectifying all suspicious and incorrect data, this dataset is homogeneous and reliable with 

123 a correct data rate close to 100%.

124 Given the lack of gauge-observation precipitation data over Central Asia since 1991, 

125 we focus on the period from 1 January 1961 to 31 December 1990. Furthermore, we chose 

126 meteorological stations with data available for at least 90% of the total number of days 

127 during 1961–1990. With this criterion, we obtained a total of 253 meteorological stations 

128 within the five countries from the GHCN-D and 63 meteorological stations in the Xinjiang 

129 region from the CMDC (Figure 1). Figure 2 shows the percentage of the total number of 

130 days with available precipitation data in each year for the 316 meteorological stations. The 
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131 average percentage of the total number of days with available precipitation data is 97.3%. 

132 Station numbers 51053 and above have a correct data rate of nearly 100%.

133 2.2.2 Gridded Precipitation Dataset

134 The APHRODITE project aims to provide long-term, high-resolution daily gridded 

135 precipitation and temperature datasets over Asia. The gridded precipitation dataset is 

136 interpolated from GTS-based data from gauge observations, data precompiled by other 

137 projects or organizations, such as other national hydrological and meteorological services, 

138 and data from individual collections. The interpolation of gauge-observation data to 

139 gridded data is applied to the ratio of daily precipitation to daily climatology using a 

140 Spheremap-type scheme, which considers daily-variation weighting based on the rainfall 

141 distribution. Considering the current study period of 1961–1990, we use the gridded daily 

142 precipitation over Russia/Northern Eurasia (APHRO_RU_V1101) from APHRODITE. 

143 The APHRO_RU_V1101 daily precipitation dataset is on a 0.25° × 0.25° latitude–

144 longitude grid and covers northern Eurasia for the period 1951–2007. We also use the ratio 

145 of 0.05° grid box containing stations provided by this dataset. 

146 Compared with the GTS analysis and the Global Precipitation Climatology Centre 

147 (GPCC) full archive product version 4 (Schneider et al., 2008), the APHRODITE 

148 precipitation data are more accurate over Central Asia and the mountainous areas as it uses 

149 more gauge-observation data. Furthermore, a considerable number of studies have used 

150 APHRODITE as a reference dataset for comparison or modeling. Readers are referred to 

151 Yatagai et al. (2012) for more information.

152 2.3 Method
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153 2.3.1 Definition of Extreme Precipitation

154 Given the relatively large spatial variation of precipitation over Central Asia, we adopt 

155 percentile-based values rather than fixed absolute values to define the extreme precipitation 

156 threshold value for each station or grid point. In addition, considering the differences in the 

157 general circulation and precipitation phase between summer and winter, we separate each 

158 year into the boreal cool (October to April) and warm (May to September) seasons. The 

159 percentile-based extreme precipitation threshold value for each station or grid point is 

160 defined based on the following procedure:

161 (1) Daily precipitation data of 1.0 mm or more were sorted in an ascending order (𝑋1,

162 ) for each station or grid point during the warm or cool seasons over 1961–𝑋2,…,𝑋𝑞,…,𝑋𝑛

163 1990. 

164 (2) The value corresponding to percentile  is determined by:𝑞

𝑋𝑞 = 𝑋𝑁𝑖 + 𝑟(𝑋𝑁𝑖 + 1 ― 𝑋𝑁𝑖) (1)

165 where

𝑁𝑖1 = 𝑓𝑙𝑜𝑜𝑟(𝑞 × (𝑛 +
1
3) +

1
3) (2)

𝑟 = 𝑞 × (𝑛 + 1) ― 𝑓𝑙𝑜𝑜𝑟(𝑞 × (𝑛 + 1)) (3)

166  is the total number of days with precipitation of 1.0 mm or more for each station or 𝑛

167 grid point, and  is the largest integer less than or equal to Y. Compared with other 𝑓𝑙𝑜𝑜𝑟(𝑌)

168 quantile definitions, this definition is a median-unbiased estimator regardless of the 

169 distribution (Hyndman and Fan, 1996). Following Zhai and Pan (2003), the percentile q 

170 chosen here is 95%. Extreme precipitation at a station or grid point is identified if the daily 

171 precipitation is above the extreme precipitation threshold value. The extreme events are 

172 counted for each day and each gauge-observation station or grid point. Therefore, an 

in 
pre

ss



9

173 extreme event is referred to a station or grid point and there could be several extreme events 

174 on a single day.

175 Noting the complicated interpolation of APHRODITE, we simply pick up the grid 

176 point nearest to the gauge-observation station to avoid additional bias induced by our 

177 interpolation (Qi et al., 2015; Hu et al., 2018). The average distance between each gauge-

178 observation station and its nearest grid point of APHRODITE is 9.1 km. For the extreme 

179 precipitation to be more comparable between two datasets, daily precipitation of an 

180 APHRODITE grid point is removed if there is a missing value in its nearest gauge-

181 observation station.

182 Since this study evaluates the APHRODITE data according to the gauge-observation 

183 data, we consider the grid point is identical to its nearest gauge-observation station 

184 assuming that the distance between them could be negligible for the extreme precipitation 

185 detection. Figures 4 and 5 are generated by interpolating the gauge-observation and the 

186 APHRODITE values into a 0.070.15 latitude/longitude grid using the geographic 

187 information of the gauge-observation station regardless of the APRHODITE gird point 

188 information. The interpolation mothed used here is radial basis function interpolation 

189 (UCAR Unidata/MetPy: 

190 https://unidata.github.io/MetPy/latest/examples/gridding/Point_Interpolation.html). 

191 Similarly, such interpolation is applied to the biases between the gauge-observation values 

192 and the APHRODITE values, POD and EDI.

193 2.3.2 Statistical Evaluation Metrics

194 To assess the extreme precipitation detection ability of the APHRODITE dataset, we 

195 use the POD and the EDI to evaluate the fidelity of the APHRODITE dataset. The (POD), 
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196 false detection ratio (FDR) and EDI are calculated based on a contingency table as shown 

197 in Table 1 and defined as:

𝑃𝑂𝐷 =
𝐻

𝐻 + 𝑀
(5)

𝐹𝐷𝑅 =
𝐹

𝐹 + 𝑁
(6)

𝐸𝐷𝐼 =
𝑙𝑜𝑔 𝐹𝐷𝑅 ― 𝑙𝑜𝑔 𝑃𝑂𝐷
𝑙𝑜𝑔 𝐹𝐷𝑅 + 𝑙𝑜𝑔 𝑃𝑂𝐷

(7)

198
199 where the number of hits of extreme precipitation (H), false detections (F) and correct 

200 negatives (N) are defined in Table 1.

201 The POD represents the ratio of the number of extreme precipitation events detected 

202 correctly by the APHRODITE dataset; the FDR denotes the proportion of the extreme 

203 precipitation events in which the APHRODITE dataset identifies extreme precipitation 

204 when the gauge-observation station does not. Compared with the POD and FDR, the EDI 

205 is base-rate independent, asymptotically equitable and non-degenerating (Ferro and 

206 Stephenson, 2011). The POD and FDR range from 0 to 1, and the EDI falls between −1 

207 and 1. For a perfect detection, the POD and EDI is 1, while the FDR is 0.

208 3. Results

209 3.1 Spatial Distribution of Extreme Precipitation

210 In order to describe the spatial characteristics of extreme precipitation events, we 

211 compute probability density functions (PDF) distributions of extreme precipitation station 

212 numbers in each day for the cool and warm seasons, which are shown in Figure 3. Daily 

213 extreme precipitation station numbers are primarily between 1 and 3 (i.e., below 1% of 

214 total number of stations) with percentages of 59.16% and 70.20% for the cool and warm 
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215 seasons, respectively. The result suggests that the extreme precipitation events over Central 

216 Asia are mainly very localized. In comparison with the cool season, the PDF distribution 

217 of the warm season shifts right substantially to the bins with small numbers of stations, 

218 indicating more localized extreme precipitation events in the warm season.

219 Figure 4 shows the spatial distribution of extreme precipitation threshold values during 

220 the boreal cool and warm seasons for the observations and the APHRODITE data. In 

221 general, the maxima of extreme precipitation threshold values are distributed along the 

222 mountains in Central Asia in both the observations and the APHRODITE data. In the cool 

223 season, the amplitudes of extreme precipitation threshold values are above 6 mm d−1 and 

224 reach up to 24 mm d−1 (Fig. 4a). The maxima are situated to the north of the Plateau of 

225 Iran, the Hindu Kush Mountains, Pamir, the western Tianshan Mountains and Kazakhskiy 

226 Melkosopochnik. The spatial distribution of APHRODITE basically resembles that of the 

227 observations but with smaller threshold values (Fig. 4b). Large biases of APHRODITE 

228 with respect to observations mainly occur over the north of the Plateau of Iran, Kazakhskiy 

229 Melkosopochnik and Xinjiang (Fig. 4c). In contrast, the warm season features larger 

230 extreme precipitation threshold values and broader maxima areas (Fig. 4d). The maximum 

231 over Pamir extends northwestward to the Aral Sea and additional maxima are seen over 

232 the east to the Caspian Sea and the eastern Tianshan Mountains. Although the spatial 

233 distribution of APHRODITE concurs with the observations, the negative biases in the 

234 warm season are nearly double their cool season counterparts (Figs. 4e and f). This 

235 underestimation of daily extreme precipitation threshold values agrees with the 

236 underestimation of monthly and annual precipitation of GPCC, Climate Research Unit 

237 (CRU) and Willmott and Matsuura (WM) datasets (Hu et al., 2018). Unlike the monthly 
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238 and annual precipitation biases, which are the largest over the mountains, the biases in daily 

239 extreme precipitation threshold values are smaller over the mountains than the lowlands.

240 Figure 5 shows the spatial distribution of the total numbers of extreme precipitation 

241 events during the cool and warm seasons over 1961-1990 for the observations and the 

242 APHRODITE data. Similar to the distribution of extreme precipitation threshold values, 

243 extreme precipitation primarily occurs over the mountains. In contrast, the biases mainly 

244 occur over the main regions of extreme precipitation. The cool season features a region of 

245 abnormally high numbers of extreme precipitation (up to 121 days) extending from the 

246 north of the Hindu Kush Mountains via Pamir to the Altai Mountains with two low centers 

247 to its east and west (Fig. 5a). In addition, moderately high numbers of extreme precipitation 

248 are observed over Kazakhskiy Melkosopochnik and to the south of the Ural Mountains. 

249 The distribution of total numbers of extreme precipitation in the APRHODITE data is 

250 consistent with the observations but with a larger magnitude (Fig. 5b). The overestimation 

251 regions coincide with the maxima of extreme precipitation occurrence and 29.4% of the 

252 total number of grid points have biases above 5 days (Fig. 5c). In the warm season, the 

253 distribution of extreme precipitation occurrence numbers is more regional and more 

254 northward than the cool season counterparts (Fig. 5d). The maxima are confined to the 

255 Tianshan Mountains and the northern border of Kazakhstan. Furthermore, there is a 

256 broader small number of extreme precipitation over the Turan Plain. Although the 

257 distribution of APHRODITE resembles that of the observations, the biases in the warm 

258 season are greater than those in the cool season (Fig. 5f). The percentage of grid points 

259 with biases beyond 5 days increases to 38.6%.
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260 Figure 6 shows time series of the total numbers of extreme precipitation events in each 

261 month derived from the 316 gauge-observation stations and APHRODITE grid points for 

262 the cool and warm seasons. The time series of APRHODITE are basically consistent with 

263 those of gauge observation with correlation coefficients of 0.98 and 0.95 at 99.9% 

264 confidence level for the cool and warm seasons, respectively. Considering the cool season, 

265 APHRODITE tends to overestimate the large numbers of extreme precipitation events, 

266 while underestimate the small numbers of events (Fig. 6a). In contrast, the warm season 

267 features more evident overpopulation of both the small and large numbers of extreme 

268 precipitation events (Fig. 6b). 

269 3.2 Possible Causes of the Bias

270 To illustrate the potential causative factors of the aforementioned lower threshold 

271 values and higher occurrence frequencies of extreme precipitation in APHRODITE relative 

272 to the observations, we calculate the PDFs and total number of wet days (> 1 mm d−1) from 

273 the two datasets. Figure 7 shows scatterplots and PDFs of the observation and 

274 APHRODITE precipitation data during the cool and warm seasons. The APHRODITE 

275 daily precipitation is highly correlated with the gauge-observation precipitation, which is 

276 significant at the 99% confidence level (  < 0.01). The scatterplots show that these two 𝑝

277 datasets concentrate along their liner regression line, particularly in the cool season (Figs. 

278 7a and b). The coefficients of linear regression for the cool and warm seasons are 0.79 and 

279 0.64, respectively, which indicates that APHRODITE has a tendency to underestimate the 

280 precipitation amplitude. However, the regression constants are positive, suggesting more 

281 small precipitation values in APRHODITE than in the observations. As seen from Figs. 7c 

282 and d, APHRODITE overestimates the precipitation between 1 mm d−1 and 4 mm d−1, 
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283 particularly in the warm season. This suggests that the precipitation distribution “spectrum” 

284 shifts to smaller amplitudes. It can be concluded from the percentile-based extreme 

285 definition that the overestimation of light precipitation and underestimation of moderate 

286 and heavy precipitation both contribute to the smaller extreme precipitation threshold 

287 values of APHRODITE with respect to the observations.

288 Figure 8 shows the spatial distribution of the biases in the total number of the wet days 

289 (>1 mm d−1) between APHRODITE and the observations. The total number of the wet days 

290 is generally larger in AHPRODITE, ranging from 20 to 350 days. The spatial distributions 

291 strongly resemble the biases of the total numbers of extreme precipitation (Figs. 5c and f). 

292 As the interpolation of APHRODITE precipitation is based on the rainfall distribution, the 

293 precipitation at gauge-observation stations adjacent to a grid point of APHRODITE could 

294 be carried into the grid point even though its nearest gauge-observation station does not 

295 have rainfall. However, such interpolation could overestimate the precipitation amplitude 

296 at a grid point if there is a precipitation maximum at its nearest gauge-observation station. 

297 These two deficits tend to be more pronounced over the regions with larger annual 

298 precipitation (i.e., the larger extreme precipitation threshold values), resulting in more 

299 evident overestimation of extreme precipitation.

300 Considering the cool season, the average precipitation and standard deviation are 4.4 

301 mm d-1 and 5.53, respectively. In comparison with the cool season, the warm season 

302 features more precipitation (5.5 mm d-1) with larger variance (6.67). The interpolation 

303 induces more evident shift of precipitation distribution “spectrum” to smaller amplitudes 

304 for the warm season with respect to the cool season (Fig. 7), which result in smaller extreme 

305 threshold values and stronger overpopulation of extreme precipitation relative to the gauge 
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306 observation. Therefore, the biases are much higher in the warm season than those in the 

307 cool season.

308 3.3 Fidelity of Representation Extreme Precipitation

309 Figure 9 shows the spatial distribution of the POD of APHRODITE extreme 

310 precipitation in Central Asia. In the cool season, the POD values are generally above 0.70 

311 over most parts of Central Asia except Kazakhskiy Melkosopochnik and the Tianshan 

312 Mountains in Xinjiang (Fig. 9a). The mean POD in Central Asia is 0.70, which suggests 

313 that 70% of the observed extreme precipitation is captured correctly by APHRODTE. 

314 Despite overestimating the number of extreme precipitation events over the mountains 

315 (Figs. 5c and f), a maximum above 0.85 is seen over Pamir. As the POD depends on the 

316 total number of extreme precipitation events in the observations, the overestimation of 

317 extreme precipitation events increases the likelihood of a high POD.

318 Similar to the aforementioned larger biases in the warm season, the warm season has 

319 smaller POD values than the cool season with a mean value of 0.65 (Fig. 9b). There are 

320 additional minima in the Turan Lowland (0.53) and the Tarim Basin (0.48), which overlap 

321 with small threshold values and low number of extreme precipitation events (Figs. 4f and 

322 5f). High PODs corresponding to overestimated extreme precipitation and a low POD 

323 corresponding to small number of extreme precipitation events suggests that the POD 

324 depends on the total number of extreme precipitation events.

325 Figure 10 shows the spatial distribution of the EDI of extreme precipitation for 

326 APHRODITE during the cool and warm seasons. Compared with the POD, the EDI is more 

327 comparable between the low and high numbers of extreme precipitation events. The 

328 amplitudes of the EDI are obviously larger than the POD. In the cool and warm seasons, 
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329 84.2% and 64.6% of grid points have EDI scores above 0.8, respectively. Three minima 

330 remain over northern Kazakhstan and central Xinjiang. In general, the identification of 

331 extreme precipitation in APHRODITE can be regarded as considerably reliable.

332 As it can be seen from Fig. 1, there are some stations within a single grid box. To 

333 quantify the impact of the number of stations included in a single grid box, we compute 

334 the averages of the extreme precipitation biases, POD and EDI stratified by different 

335 number of stations within each of 316 grid boxes. The grid boxes mainly include 1 and 2 

336 gauge-observation stations, which are 191 and 110, respectively. Besides, 13 grid boxes 

337 encompass 3 stations, while only 2 grid boxes include 5 stations. Table 2 shows the 

338 averages of extreme precipitation biases, POD and EDI stratified by 1, 2, 3 and 5 stations 

339 within a grid box. As it will be subsequently shown in the discussions, there are two stations 

340 not incorporated to APHRODITE and two stations with 5-year anomalous values, where 

341 the APHRODITE grid points exhibit relatively low performances. These four stations are 

342 only related to four grid boxes that include 3 stations. To be more comparable, we have 

343 removed these four stations and grid points for the grid box with 3 stations. There is an 

344 overall improvement of APHRODITE in representing extreme precipitation if the grid box 

345 incorporates 2 and 3 gauge-observation stations. Although the grid boxes with 5 stations 

346 have some improvements in POD and EDI with respect to those with 1 station, they exhibit 

347 an overall degradation compared to those with 2 and 3 stations. Such degradation could 

348 possibly be attributed to the impact of topography since these two grid boxes are both in 

349 the Trans-Ili Alatau Mountains with altitudes of 3185 m and 3966 m, respectively. 

350 4. Discussions
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351 It is noted that station numbers 36335, 51581 and 51655 (marked in Fig. 8a) have the 

352 lowest POD and EDI in the cool season. By checking the ratio of the 0.05° grid box 

353 containing stations provided by APHRODITE, we confirm that the APHRODITE dataset 

354 does not incorporate station numbers 51581 and 51655 in Xinjiang and station number 

355 36335 in Kazakhskiy Melkosopochnik before 1966 in the interpolation. Apparently, owing 

356 to the absence of station numbers 51581 and 51655, their nearest grid points in 

357 APHRODITE fail to identify extreme precipitation.

358 We compare the gauge-observation precipitation of station number 36335 with the 

359 precipitation of its nearest grid point in APHRODITE in the warm season, which is shown 

360 in Figure 9. Although the number of extreme precipitation events is comparable between 

361 the two datasets, the extreme precipitation events do not exactly overlap with each other. 

362 The observational data show that extreme precipitation dominates during 1961–1965. In 

363 APRHODITE, this station is ruled out for this period after a series of quality control checks 

364 conducted by the APRHODITE gridding algorithm. As such, the predominant extreme 

365 precipitation events in the observations during 1961–1965 are absent in APHRODITE. As 

366 a result, the extreme precipitation threshold value dramatically declines from 38.2 mm d−1 

367 for the observations to 12.1 mm d−1 for APRHODITE, resulting in more extreme 

368 precipitation since 1966 in the APRHODITE dataset. Therefore, station number 36335 has 

369 smaller values for both the POD and EDI. Similarly, the quality control processes of 

370 APHRODITE also rule out some of the extreme precipitation in the gauge observations, 

371 particularly in the desert areas, which results in relatively lower POD and EDI scores and 

372 higher negative biases of the threshold in the Turan Lowland and the Tarim Basin. We 
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373 have checked carefully the other 315 stations, and there is another station No. 35582 similar 

374 to No. 36335.

375 Figure 10 shows the distribution of the distance between each observation station and 

376 its nearest grid point in APHRODITE. The distance shows a normal distribution with mean 

377 value of 9.1 km and a standard deviation of 3.6. The magnitude of the distance ranges 

378 between 1.1 km and 16.7 km. APHRODITE uses a modified distance-weighting 

379 interpolation method (Yatagai et al., 2012, 2018), which partially contributes to 

380 underestimation of precipitation and extreme precipitation extreme values. As we mainly 

381 focus on the representation of extreme precipitation rather than the precipitation errors, we 

382 assume that such a distance is negligible for the detection of extreme precipitation.

383 The number of extreme precipitation days is not comparable between the cool and 

384 warm seasons, which are 212*30 and 153*30, respectively. Strictly speaking, we should 

385 not directly compare the distribution of extreme precipitation between two seasons. 

386 However, this study compares the distribution of extreme precipitation in the warm season 

387 with that in the cool season to highlight the signatures of extreme precipitation and make 

388 the study more concise.

389 5. Conclusions

390 Using gauge-observation data, this study examines the fidelity of the APHRODITE 

391 dataset in representing extreme precipitation over Central Asia, which includes the 

392 conventional five countries and Xinjiang province in China, in terms of the extreme 

393 precipitation threshold value, the total number of extreme precipitation events, POD and 

394 EDI during the cool and warm seasons during 1961–1990.
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395 The APHRODITE dataset is highly correlated with the gauge-observation 

396 precipitation data and can reproduce the spatial distributions of the extreme precipitation 

397 threshold value and occurrence number. For the cool season, the maxima of the extreme 

398 precipitation threshold value and occurrence number reside over the mountainous areas, 

399 such as the Hindu Kush Mountains, Pamir, the western Tianshan Mountains and 

400 Kazakhskiy Melkosopochnik. APHRODITE tends to underestimate the extreme 

401 precipitation threshold value, particularly over the regions with moderate threshold values. 

402 In contrast, APHRODITE overestimates extreme precipitation over the regions with 

403 greater threshold values. Considering the temporal feature, APRHODITE is basically 

404 consistent with gauge observation with an overall overpopulation, particularly during the 

405 time with large numbers of extreme precipitation events. The distribution-based 

406 interpolation of precipitation results in APHRODTE overestimating light rainfall and 

407 underestimating heavy rainfall. Therefore, APHRODITE underestimates the extreme 

408 precipitation threshold value and overestimates the total number of extreme precipitation 

409 events, particularly over the mountainous areas. Since more powerful shift of precipitation 

410 distribution “spectrum” to smaller amplitudes for the warm season with respect to the cool 

411 season, the biases are more evident in the warm season than the cool season.

412 The POD and EDI reveal that APHRODITE has a fairly good capability of detecting 

413 extreme precipitation, particularly in the cool season. The number of sampling grid points 

414 with POD values above 0.7 account for 79.7% of the grid points in the cool season and 

415 60.7% in the warm season, while grid points with EDI values above 0.8 account for 84.2% 

416 and 64.6% of the grid points in the cool and warm seasons, respectively.
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417 This study primarily focused on the representation of extreme precipitation in 

418 APHRODITE during 1961–1990 and interpreted the biases from the perspective of the 

419 precipitation distribution. The interannual and interdecadal variabilities of extreme 

420 precipitation and the corresponding large-scale meteorological patterns remain to be 

421 unexplored. To address these questions, our future study will extend the study period to 

422 2015 to investigate the temporal variability of extreme precipitation on the basis of the 

423 current extreme precipitation threshold value as well as the underlying physical 

424 mechanisms using the APHRODTE dataset with the satellite precipitation data instead of 

425 gauge observation data. Based on our finding, it is appropriate to perform the extreme 

426 analysis with APHRODITE to the places that incorporates gauge-observation data. 

427 Extremes over places without incorporating gauge observation should be examined 

428 carefully with atmospheric circulations. The total number of gauge-observations stations 

429 over Central Asia experienced two drastic declines in 1991 and 2006, respectively, which 

430 is the same situation for APHRODITE (Yatagai et al., 2012, 2018). It is unrealistic to 

431 conduct the extreme analysis over Central Asia since 2007 using the gauge-observation 

432 data. Therefore, it would be better to use the APHRODITE dataset with the satellite 

433 precipitation data that calibrated with the APRHRODITE data over their overlap years, 

434 taking 1998-2004 for example (Yatagai et al., 2014).
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546 Table 1. The contingency table of extreme precipitation detected by the APHRODITE 

547 dataset.

Event observed Nonevent observed Total
Detected H F H+F

Non-detected M N M+N
Total H+M F+N 𝑛

548
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549 Table 2. The average biases of extreme threshold values (p95) and total number of 

550 extreme precipitation events (Events), POD and EDI stratified by the number of stations 

551 within a grid box for the cool and warm seasons.

p95 Events POD EDINumber of 

stations Cool Warm Cool Warm Cool Warm Cool Warm

1 -2.93 -5.98 4.13 5.83 0.74 0.68 0.84 0.78

2 -2.10 -5.24 4.20 4.74 0.80 0.76 0.89 0.86

3 -1.28 -3.93 4.42 6.83 0.79 0.78 0.89 0.88

5 -3.34 -4.60 1.50 7.00 0.79 0.72 0.90 0.85
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552

553 Fig. 1. Topography features and the distribution of the meteorological stations in Central 

554 Asia. Colored shading indicates the topography (units: m). Blue lines indicate the major 

555 rivers. KAZ, Kazakhstan; TAD, Tajikistan; TUR, Turkmenistan; KYR, Kyrgyzstan; UZB, 

556 Uzbekistan; Xinjiang, Xinjiang Uygur Autonomous Region of China.
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557

558 Fig. 2. The percentage of total number of days with available precipitation data in each 

559 year for 316 gauge-observation stations in Central Asia over 1961-1990.
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561

562 Fig. 3. PDF of extreme precipitation station numbers in each day for the (a) cool and (b) 

563 warm seasons. in 
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564

565 Fig. 4. The spatial distribution of extreme precipitation threshold values (units: mm d−1) in 

566 the boreal cool season for (a) observations and (b) APHRODITE and (c) the bias between 

567 (b) and (a). (d)–(f) as for (a)–(c), but for the warm season.
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568

569 Fig. 5. As in Fig. 4, but for the total numbers of extreme precipitation events over 1961-

570 1990.
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572

573 Fig. 6. Time series of the total numbers of extreme precipitation events in each month 

574 derived from the 316 gauge-observation stations (blue) and APHRODITE grid points (red) 

575 for the (a) cool and (b) warm seasons.
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576

577 Fig. 7. Density colored scatterplots of precipitation from observations and APHRODITE 

578 during the (a) cool and (b) warm seasons. Colors indicate the total numbers and the red line 

579 denotes the linear regression between the observation precipitation and the APHRODITE 

580 precipitation. PDFs of precipitation for observation (red) and APHRODITE (blue) during 

581 the (c) cool and (d) warm season.
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582

583 Fig. 8. The spatial distribution of biases in the total number of the wet days (>1 mm d−1) 

584 between APHRODITE and the observations in Central Asia during (a) the cool season and 

585 (b) the warm season during 1961–1990.

in 
pre

ss



36

586

587 Fig. 9. The spatial distribution of the POD of extreme precipitation derived from 

588 APHRODITE in Central Asia during the (a) cool season and (b) warm season.
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589

590 Fig. 10. As in Figure 9, but for EDI. Markers in (a) indicate locations of station No.36335 

591 (cross), No.51581 (circle) and No.51655 (triangle), respectively.
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592

593 Fig. 11. Time series of daily precipitation for (a) station number 36335 and (b) its nearest 

594 grid point in APHRODITE in the warm season during 1961–1990. The dash lines represent 

595 the extreme precipitation criterion.
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596

597 Fig. 12. Histogram of distance between each observation station and its nearest grid point 

598 in APHRODITE. The black line indicates the PDFs derived from a normal distribution 

599 fitting method.

600
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