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31 ABSTRACT

32 Long-term, ground-based daily global solar radiation (DGSR) at Zhongshan 

33 Station in Antarctica can quantitatively reveal the basic characteristics of Earth’s 

34 surface radiation balance and validate satellite data for the Antarctic region. The fixed 

35 station was established in 1989 and conventional radiation observations started much 

36 later in 2008. In this study, a random forest (RF) model for estimating DGSR was 

37 developed using ground meteorological observation data, and a high-precision, 

38 long-term DGSR dataset was constructed. Then, the trend of DGSR from 1990 to 

39 2019 at Zhongshan Station, Antarctica, was analyzed. The RF model, which performs 

40 better than other models, shows a desirable performance of DGSR hindcast estimation 

41 with an R2 of 0.984, root-mean-square error of 1.377 MJ/m2, and mean absolute error 

42 of 0.828 MJ/m2. The trend of DGSR annual anomalies increased during 1990-2004 

43 and then began to decrease after 2004. Note that the maximum value of annual 

44 anomalies occurred during approximately 2004/05 and is mainly related to the days 

45 with precipitation (especially those related to good weather during the polar day 

46 period) at this station. In addition to clouds and water vapor, bad weather conditions 

47 (such as snowfall, which can result in low visibility and then decreased sunshine 

48 duration and solar radiation) were the other major factors affecting solar radiation at 

49 this station. The high-precision, long-term estimated DGSR dataset enables us to 

50 further study and understand the role of Antarctica in global climate change and the 

51 interactions between snow, ice and atmosphere.

52 Keywords: meteorological variables, RF model, estimated historical DGSR, 
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53 long-term trend analysis

54

55 https://doi.org/10.1007/s00376-021-0386-6

56 Article Highlights:

57  A thirty-year DGSR dataset, which was produced by combining in situ 

58 meteorological observation records with a random forest model, is presented.

59  Among the considered models, the RF model shows the best performance for 

60 estimating historical DGSR with an R2 of 0.984, root-mean-square error of 1.377 

61 MJ/m2, and mean absolute error of 0.828 MJ/m2.

62  The long-term DGSR trend generally increased during 1990-2004 and then began 

63 to decrease after 2004 at Zhongshan Station.

64  In addition to clouds and water vapor, abnormal weather in Antarctica (such as 

65 fog, blowing snow and snowstorms) was also a major factor affecting solar 

66 radiation.
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68 1. Introduction

69 Daily global solar radiation (DGSR, which includes direct and scattered radiation 

70 and refers to the total amount of downward shortwave radiation received by the 

71 surface each day) is the ultimate source of energy on Earth (Wild, 2009; Wild et al., 

72 2005). Spatiotemporal variations in DGSR determine the climates and environments 

73 on the Earth's surface and drive the water, heat and carbon cycles of the Earth system 

74 (Che et al., 2005; Wang and Wild, 2016). Polar regions play a vital role in the Earth's 

75 surface radiation balance and climate system because there are many important, 

76 complex and interacting feedback mechanisms that closely bind the surfaces of polar 

77 regions to the global climate system (Bintanja, 1995; Braun and Hock, 2004; Park et 

78 al., 2013; Soares et al., 2019; Stanhill and Cohen, 1997). As a result, solar radiation 

79 observations and related research in the Antarctic region have received increasing 

80 attention (Choi et al., 2019; Ding et al., 2020; Garbe et al., 2020; Zhang et al., 2019).

81 To date, various types of data have been used to study the radiation balance in 

82 Antarctica, including reanalysis data, satellite data, and ground station data (Ding et 

83 al., 2020; Scott et al., 2017; Stanhill and Cohen, 1997; Yang et al., 2014; Zhang et al., 

84 2016). Scott et al. (2017) used the Clouds and the Earth’s Radiant Energy System 

85 (CERES) and CALIPSO-CloudSat-CERES-MODIS datasets to study the seasonal 

86 changes and spatial distribution of solar net radiation and cloud radiative forcing in 

87 southwestern Antarctica from only 2007 to 2010. Zhang et al. (2016) verified the 

88 DGSR of six reanalysis datasets by using surface stations around the Antarctic 

89 continent and the given deviation value of each reanalysis product. However, 
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90 satellite-based and reanalysis-based radiation products often face the problem of 

91 deviation between the products and trusted ground observations (Jaross and Warner, 

92 2008). Stanhill and Cohen (1997) summarized solar radiation measurements across 

93 Antarctica (from 12 stations containing 2 to 36 years of data) since 1957. However, 

94 the data from most stations used in the above study were very short-term and 

95 nonhomogeneous, and it is difficult to gain a full understanding of the long-term 

96 characteristics of DGSR in Antarctica (Lacelle et al., 2016; Stanhill and Cohen, 

97 1997). In addition, ground-based DGSR observation sites are rare because the special 

98 geographical location and harsh natural environment of Antarctica seriously hinder 

99 the study of surface radiation balance (Aun et al., 2020).

100 In fact, beyond Antarctica, DGSR observation sites are similarly sparse and 

101 uneven across the world due to various problems, such as expensive instruments (He 

102 et al., 2018; He and Wang, 2020; Tang et al., 2013, 2011). However, meteorological 

103 variables (especially sunshine duration) interact with DGSR, and the number of 

104 conventional meteorological observation stations is greater than that of solar radiation 

105 stations (Tang et al., 2010; Zeng et al., 2020). Therefore, to obtain long-term, 

106 high-density, ground-based solar radiation products, many studies have estimated 

107 DGSR from conventional surface meteorological observations using traditional 

108 empirical formulas, physical models and machine learning methods (Chen et al., 

109 2013; Huang et al., 2011; Jiang, 2009; Qin et al., 2011; Tang et al., 2018, 2013; Wang 

110 et al., 2016). However, these methods have rarely been used in the Antarctic.

111 The Chinese Antarctic Zhongshan Station (69°22'24.76"S, 76°22'14.28"E) is 
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112 located on the southeast coast of Pritzker Bay in the Lasman Hills of East Antarctica 

113 (Figure 1a) (Ai et al., 2019; Chen et al., 2020). Its meteorological observation field is 

114 15 m above sea level and approximately 300 m from the nearest coast (Dou et al., 

115 2019; Yu et al., 2017). The local circulation (including valley breezes, land and sea 

116 breezes, and katabatic winds) is complicated due to the multifarious landforms and 

117 special geographical location. The climate at the station is characterized by low 

118 temperature, large temperature difference between winter and summer, low humidity 

119 and strong wind; it has the obvious characteristics of an Antarctic continental climate 

120 (Yu et al., 2017). Furthermore, as the station is located in front of the Antarctic inland 

121 ice sheet, katabatic winds are very obvious, so the DGSR in this area is affected by 

122 many factors (Ding et al., 2019). Note that the station was established in 1989, but the 

123 DGSR observations began in 2008. Therefore, we aimed to address the lack of 

124 radiation data and improve the understanding of Antarctic radiation and its response 

125 to global climate change. This study takes the Chinese Zhongshan Station in 

126 Antarctica as an example. Based on conventional ground meteorological observations 

127 and existing ground radiation observation data, DGSR is estimated using the optimal 

128 machine learning method, and then a long-term (~32 year) radiation dataset is 

129 obtained. The long-term trend of DGSR and the effects of clouds, water vapor, and 

130 visibility on DGSR were also analyzed in this study.
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131 2. Data and methods

132 2.1 Meteorological observation data

133 Meteorological observations began in March 1989, and so far, 32 years of 

134 conventional ground meteorological observation data have been accumulated at 

135 Zhongshan Station, Antarctica. To ensure the accuracy and quality of observation 

136 data, the observation instruments and methods and the accuracy of the ground 

137 observation system have been operated in accordance with the ground meteorological 

138 observation standards of the China Meteorological Administration [Ground 

139 meteorological Observation Standards of China Meteorological Administration]. 

140 Before February 2002, instrumental observations were recorded manually four times 

141 per day (except sunshine duration, which was recorded hourly) at Zhongshan Station; 

142 after February 2002, the observation mode changed to an hourly wired telemetry 

143 automatic observation system. For more information on the meteorological variables 

144 and current sensor types, please see Table 1. All the sensor sampling intervals were 

145 changed to 1-min intervals, and the observation data were recorded 24 hours per day. 

146 During the instrument replacement period, parallel observations were performed for at 

147 least three months. After filtering the abnormal values, homogenization and quality 

148 control were also performed by the China Meteorological Administration. Then, the 

149 quality controlled and homogeneous observation data were used for data processing 

150 and model construction.

151 Previous work aims to establish a virtual network of DGSR datasets using the 
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152 random forest (RF) model and high-density ground meteorological observations at 

153 ~2400 sites across China (Zeng et al., 2020). Due to the spatiotemporal heterogeneity 

154 of DGSR, dummy variables including day of year (DOY), latitude, longitude and 

155 altitude at all paired stations were also used as input variables in the prediction model. 

156 We used the RF model (as the optimal model) and calculated the relative importance 

157 of the variables in this study. This study aimed to construct a high-precision, 

158 long-term DGSR dataset for Zhongshan Station, Antarctica. Some dummy variables 

159 (latitude, longitude and altitude) and some meteorological variables (e.g., land surface 

160 temperature, due to the lack of observations at this station) were not used in this 

161 study. As suggested by previous studies (Wang et al., 2016; Zeng et al., 2020), 

162 meteorological elements that are highly associated with DGSR were selected as the 

163 input variables for the machine learning model. These variables include surface 

164 pressure (SP), relative humidity (RH), temperature (Tem), wind speed (WS), and 

165 sunshine duration (SSD) (corresponding short and full names are shown in Table 1). 

166 The dummy variables (i.e., DOY and month) are also used as input variables in the 

167 prediction model (similar to Zeng et al. (2020)). DGSR is affected by cloud cover, 

168 water vapor, and aerosols before reaching the surface (Che et al., 2005). However, 

169 aerosols over the Antarctic are relatively low, so they will not be discussed in this 

170 study. In addition, bad weather events (fog, snowfall, blowing snow and snowstorms) 

171 with low visibility are frequent at Zhongshan Station and also affect the DGSR. To 

172 further analyze the potential causal factors of the DGSR variations, ground vapor 

173 pressure (e, which is calculated by temperature and air pressure and represents water 
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174 vapor content), cloud cover (CF), low cloud cover (LCF) and visibility (Vis) data are 

175 also used in this study (CF, LCF and Vis data were collected by manual visual 

176 observation).

177 Solar radiation observations started relatively late (March 2008) at Zhongshan 

178 Station, although short-term observations and research projects of solar radiation were 

179 performed during the periods of January-February 1990 (Wang and Xiong, 1991) and 

180 February 1993 to December 1994 (Bian et al., 1998). The solar radiation dataset for 

181 2008 to 2020 was first used in this study. The observation site is located in the 

182 meteorological field north of the station (as shown in Figure 1b), where the surface is 

183 exposed rock from November to February, and there is snow for a short time in other 

184 periods, although there is usually almost no snow. A TBQ-2-B pyranometer (Figure 

185 1c) was used to measure global solar radiation with a wavelength range of 0.3 to 3 μm 

186 and a resolution of hours at this station. The measured signal range of the TBQ-2-B 

187 pyranometer is 0-2000 W/m2, the output signal is 0-20 mV, and the annual stability is 

188 ±2%. To ensure the accuracy of observation data, the TBQ-2-B pyranometer passed 

189 the verification and calibration of the China Meteorological Administration before 

190 installation.

191

192 2.2 Model development

193 2.2.1 Data processing and time matching

194 The meteorological observation data with a data quality code of 0 (passing all 
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195 quality control checks) were extracted and time matched. The meteorological data 

196 observed at 00, 06, 12, and 18 hours (UTC) each day were then averaged to obtain the 

197 daily mean values. The DGSR and SSD were obtained as the sums of 24 hours per 

198 day. The final available data include conventional meteorological data from March 

199 1989 to March 2020 and radiation observations from March 2008 to March 2020. 

200 Figure 3 shows the statistical properties (minimum, maximum, mean, and standard 

201 deviation) of the variables used for model training, testing and hindcast estimation at 

202 Zhongshan Station during 2010-2020. The DGSR (SSD) ranges from 0 (0) to 36.27 

203 MJ/m2 (21.70 hours), and the annual average value is 10.04 MJ/m2 (4.83 hours). The 

204 annual average SP, Tem, RH, and WS are 985.08 hPa, -10.16 °C, 56.90%, and 6.49 

205 m/s, respectively.

206 2.2.2 Model building

207 We evaluated the performances of machine learning models for estimating DGSR at 

208 Zhongshan Station, including RF (Chen et al., 2018), Light Gradient Boosting 

209 Machine (LightGBM) (Chen et al., 2019; Ke et al., 2017), decision tree (DT) 

210 (Quinlan, 1986), back propagation neural network (BPNN) (Wen et al., 2002), 

211 eXtreme Gradient Boosting (XGBoost) (Zelterman, 2015), support vector machine 

212 (SVM) (Cortes and Vapnik, 1995), multiple linear regression (MLR) (Zelterman, 

213 2015) and Adaptive Boosting (AdaBoost) (Wang, 2012) models. The RF model is a 

214 widely used machine learning model that has a highly flexible algorithm and the 

215 capacity to analyze complex interactions of data classifications with noise or missing 

216 values (Chen et al., 2018). The RF model has also been used as a variable selection 

217 tool to select the input variables for a final model (Zeng et al., 2020). The RF model 

218 uses a bagging method to produce the training dataset. The out-of-the-bag (out-of-bag, 

219 OOB) data were used to evaluate the veracity of the regression predicted by the RF 
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220 model. OOB estimation was an unbiased estimation when the number of trees was 

221 sufficient. In common statistical methods, overfitting occurs frequently when the 

222 methods have high degrees of freedom. In contrast to other models (e.g., the BPNN 

223 and SVM models), the RF model is an ensemble of random trees and basically has no 

224 issue of overfitting. LightGBM is a gradient promotion framework based on decision 

225 trees and can model complex nonlinear functions. LightGBM has the advantages of 

226 distributed and high performance in sorting, classification, and regression (Chen et al., 

227 2019). The DT is a common and extensively researched solution to classification and 

228 prediction (Quinlan, 1986). The BPNN is a multilayer feedforward neural network 

229 based on a mathematical technique named Bayesian regularization to convert 

230 nonlinear regression into “well-posed” problems (Wen et al., 2002). The BPNN is 

231 composed of three layers: an input layer (first layer), hidden layer (middle layer), and 

232 output layer (last layer). XGBoost is a boosting algorithm with high performance for 

233 various regression and classification issues. The XGBoost method requires less 

234 training and time for prediction and can improve computing speed and accuracy (Gui 

235 et al., 2020). The SVM was developed by Vapnik-Chervonenkis dimension theory 

236 and structural analysis of the minimum risk principle. The SVM exhibits a unique 

237 advantage in dealing with small-sample problems, nonlinear cases, and 

238 high-dimensional pattern recognition problems by its kernel functions (Cortes and 

239 Vapnik, 1995). MLR is the regression analysis involving two or more independent 

240 variables. The MLR model can intuitively and quickly analyze correlations between 

241 multiple variables and dependent variables (Zelterman, 2015). Hence, MLR has been 

242 widely used in social science, economics, and technology. AdaBoost is an excellent 

243 boosting algorithm that combines multiple weak classifiers into a strong classifier. 

244 The main purpose of AdaBoost is to train different learning devices on the same 

245 training set and then combine these devices to construct a stronger final learning 

246 device (Wang, 2012).

247 The model with the best estimated performance will be the final model in this 

248 study. As in previous work (Zeng, et al., 2020), to obtain the optimal machine 

249 learning model, the results of 10-fold cross-validation (10-fold CV) were used to 
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250 evaluate the model performances with different parameters (the final parameters of 

251 the models are shown in Table 2). In 10-fold CV, the matched pairs were partitioned 

252 into ten parts in equal proportion, with the first part as the testing subset and the other 

253 nine parts as the training subsets. This step was repeated ten times until every subset 

254 was tested, and the estimation results (mainly consisting of the coefficient of 

255 determination, R2, root-mean-square error, RMSE, and mean absolute error, MAE) of 

256 the 10 parts were averaged and used as the accuracy of the final model. The accuracy 

257 indicators, including the R2, RMSE, MAE, and difference (estimated minus 

258 observed), were used to assess the capabilities of the machine learning models and 

259 then obtain an optimal model (Gui et al., 2020; Zeng et al., 2020). In this study, we 

260 used the data from April 2010 to March 2020 for training, the 10-fold CV method for 

261 testing, and the period from April 2008 to March 2010 for evaluating the historic 

262 estimates.

263 2.2.3 Model application

264 The optimal model obtained from the above models was applied to estimate the 

265 DGSR using meteorological measurements recorded at Zhongshan Station from 

266 March 1989 to February 2020. The time variations in DGSR estimated by the optimal 

267 model were then compared with the observed DGSR. Finally, the long-term historical 

268 estimated DGSR at Zhongshan Station was analyzed, and then changes in the trend 

269 and the possible factors influencing these changes were further investigated.

270 2.3 Methods for DGSR trend analysis

271 Least squares regression has been applied to detect the linear trend in DGSR 

272 annual anomalies (Guo et al., 2017). Five-year running means of DGSR anomalies 

273 have been used to visually display the DGSR trend (Xue et al., 2019). In addition, the 
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274 sliding trend analysis method has been used to help examine the time nodes of 

275 changes because trends often change with the span of the variable calculation period 

276 (Che et al., 2019; Gui et al., 2019). According to the method from Gui et al. (2019), 

277 we used Student’s t tests to detect the robustness of each trend, and the criterion for 

278 statistical significance was set at the 95% confidence level. Since the estimated DGSR 

279 dataset and meteorological observation dataset have complete records of the whole 

280 year for each year from 1990 to 2019, the study period is set as 1990-2019 for the 

281 analyses of the monthly variations in meteorological variables and DGSR and the 

282 long-term changes in the DGSR trend.

283

284 3. Results and discussion

285 3.1 Validation and comparison of models

286 Figure 4a and 4b shows the scatterplots of the fitted model and 10-fold CV model 

287 results of the RF model from April 2010 to March 2020 at Zhongshan Station, 

288 Antarctica. Compared with those of other models, we found that the fitted and 10-fold 

289 CV results of the RF model have higher R2 values of 0.997 and 0.988 and lower 

290 RMSE (MAE) values of 0.547 (1.189) MJ/m2 and 0.278 (0.648) MJ/m2, respectively. 

291 To assess the performance of the hindcast estimated by the RF model, the hindcast 

292 estimated results from April 2008 to March 2010 are shown in Figure 4c. We found 

293 that the hindcast estimated DGSR presented good consistency with the observed 

294 DGSR (R2 = 0.984, RMSE = 1.377 MJ/m2, and MAE=0.828 MJ/m2). To further 

295 examine the hindcast performance of the DGSR estimated by the RF model, as an 
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296 example, we selected historical estimated DGSR in 2009 (obtained from hindcast 

297 estimated results during April 2008-March 2010) for comparison with the ground 

298 observed DGSR. Figure 5a shows the daily time series (Figure 5b depicts the 

299 difference) of observed DGSR and estimated DGSR at Zhongshan Station. These two 

300 time series are highly consistent with each other, and the higher daily (monthly) mean 

301 difference values mainly occur in the summer, especially in the polar day period, but 

302 do not exceed ±5 (±0.85) MJ/m2. Figure 5b also shows that approximately 96.7% 

303 (343 days in 2009) of the difference values (observed DGSR minus estimated DGSR) 

304 fell within the range of ±2 MJ/m2. The results indicate that the DGSR estimated by 

305 the RF model closely fits the observed DGSR. Considering the CV results and the 

306 accuracy of the historic estimates, the RF model is highly recommended for DGSR 

307 estimation at Zhongshan Station in this study. The relative importance of the variables 

308 in the RF model is illustrated in Figure S1. As shown in Figure S1, SSD plays a 

309 dominant role in terms of the relative importance in the RF model and accounts for 

310 60.3% of the overall importance. This result is consistent with previous studies 

311 showing that SSD is significantly correlated with DGSR (Wang et al., 2016; Zeng et 

312 al., 2020). The results also indicate two other dominant variables: DOY and Tem 

313 (accounting for 16.8% and 16.1% of the overall importance, respectively). These 

314 results suggest that DOY (seasonal effects) and Tem are also critical for DGSR 

315 estimation.

316 In addition to evaluating the performance of the RF model, we also evaluated the 

317 performances of other commonly used machine learning models for estimating DGSR 
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318 at Zhongshan Station. From the results of the performance comparison in Table 3, the 

319 RF model performs better than the other models, and the LightGBM, XGBoost, 

320 BPNN, and gradient boosted regression tree (GBRT) models show similar historic 

321 estimation abilities, followed by those of the DT and AdBoost models. The SVM and 

322 MLR models have the worst performances. In common statistical methods, overfitting 

323 frequently occurs when the methods have high degrees of freedom. In contrast to 

324 other models, the RF model is an ensemble of random trees and has no issue of 

325 overfitting in this study.

326 Overall, these comprehensive results further confirm that the RF model has 

327 reliable performance in estimating historical DGSR. We can expect that it will be 

328 feasible to reconstruct the historical DGSR based on meteorological observation data 

329 and the RF model. Thus, the estimated historical dataset is used to accurately describe 

330 the comprehensive characteristics and changes in the long-term trend of DGSR. 

331 Therefore, we mainly use the DGSR estimated by the RF model for 1989 to 2020 in 

332 the following trend analysis.

333 3.2 Monthly and annual variations in DGSR

334 Before analyzing the changes in the DGSR trend, we calculated the monthly and 

335 annual characteristics of DGSR estimated by the RF model and the corresponding 

336 meteorological variables over the period of 1990-2019 (as shown in Figure 6). The 

337 estimated DGSR shows significant monthly and seasonal changes, in which the 

338 DGSR during the half-year of summer (October to March) is significantly higher than 
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339 that during the half-year of winter (April to September), and the higher DGSR values, 

340 up to 30 MJ/m2, are mainly during the polar day period, while the DGSR values are 0 

341 MJ/m2 during the polar night period. The monthly average humidity varies from 56% 

342 to 61% from 1990 to 2019 and is higher in summer than in other seasons. The 

343 monthly mean temperature varies from -2.90 to 0.24 ℃ in summer and from -14.74 to 

344 -16.12 ℃ in winter. The monthly average temperature is the highest in January (0.24 

345 ℃) and the lowest in July (-16.18 ℃). Variations in surface pressure at Zhongshan 

346 Station are characterized by half-year waves. From January to June, there are periods 

347 of high pressure, and other months have periods of low pressure. The highest (lowest) 

348 monthly average surface pressure occurs in June (October) and is greater than 988 

349 hPa (lower than 981 hPa). The wind speed is the highest in winter, followed by that in 

350 autumn, spring and summer. The highest (lowest) monthly average wind speed is 7.94 

351 m/s (5.01 m/s) in August (January).

352 Zhongshan Station is located on the edge of the Antarctic continent and is near the 

353 Antarctic ice sheet. The winds at this station are mainly affected by a combination of 

354 the easterly airflow in the northern part of the Antarctic continent, polar cyclones and 

355 katabatic winds. Easterly winds prevail over this station year round. In summer 

356 (December, January and February), both the Antarctic continental cold high-pressure 

357 system and the circumpolar low-pressure zone are weaker, and the smaller pressure 

358 gradient between these two synoptic systems induces a lower wind speed. In winter 

359 (April, May and June), the prevailing Antarctic continental high-pressure system 

360 strengthens, and the circumpolar low-pressure zone moves southward, which causes a 
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361 larger pressure gradient and thus results in a higher wind speed. Additionally, the 

362 monthly variations in air pressure at Zhongshan Station are closely related to these 

363 two synoptic systems. Zhongshan Station is covered by snow and ice and the air has 

364 lower relative humidity in winter, while the snow and sea ice around this sation melt 

365 in summer and thus cause increased saturation of water vapor in the air and higher 

366 relative humidity. It is noted that the long sunshine duration and strong solar radiation 

367 in summer play key roles in the temperature increase at this station.

368 The monthly variation in SSD is basically consistent with that in DGSR, and the 

369 R2 between SSD and DGSR is 0.88, indicating that SSD is the main input variable for 

370 DGSR in the machine learning models. Figures S2 and S3 show that the yearly 

371 average value of the estimated DGSR coincides with that of the measured DGSR 

372 from 2009 to 2019 (and also in 1994), and the differences (estimated DGSR - 

373 observed DGSR) were mainly distributed between -0.1 and 0.1 MJ/m2. Furthermore, 

374 the annual changes in the estimated DGSR and observed SSD trends are highly 

375 consistent, suggesting that historical DGSR estimated by the RF model has high 

376 accuracy for further analysis (such as annual anomaly trends and sliding trends).

377 3.3 DGSR trend

378 Note the continuous presence and absence of solar radiation during summer and 

379 winter, respectively, because the peculiar conditions of polar day (beginning on 

380 November 23 and ending on January 21 of the following year at Zhongshan Station) 

381 and polar night (beginning on May 27 and ending on July 18 each year at this station) 
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382 occur in Antarctica. In addition, the DGSR values were 0 MJ/m2 during the polar 

383 night period. Therefore, the DGSR trend analysis was divided into the following three 

384 scenarios: all days of the year (annual, scenario 1), the polar day period (scenario 2), 

385 and the period of all days of the year except for polar day and polar night (scenario 3). 

386 Figure 7a to Figure 7c shows the DGSR anomalies and their trends for the three 

387 scenarios. It can be seen that the trend of the DGSR annual anomalies increased 

388 during 1990-2004 and then began to decrease after 2004. However, obvious 

389 differences in anomaly values exist among the three scenarios. The variation in DGSR 

390 anomalies is the greatest during the polar day period (increasing linear trend of 0.175 

391 MJ/m2/year and decreasing linear trend of -0.101 MJ/m2/year, which are significant at 

392 the 95% confidence level), followed by that during all days of the year (increasing 

393 linear trend of 0.039 MJ/m2/year and decreasing linear trend of -0.025 MJ/m2/year, 

394 which are significant at the 95% confidence level), and is lowest during the period of 

395 all days of the year except for polar day and polar night (increasing linear trend of 

396 0.011 MJ/m2/year and decreasing linear trend of -0.001 MJ/m2/year, which are not 

397 statistically significant). In general the trend of DGSR is similar to Europe (except for 

398 China, with a decreasing trend between 1990 and 2000) during the period of 

399 brightening, slightly ascend to the early 2005s, after which it shows a decrease to the 

400 present (Che et al., 2005; Ohmura, 2009).

401 The DGSR is strongest during the polar day period, accounting for approximately 

402 43% of the annual global solar radiation. The surface of Earth receives more solar 

403 radiation because the sun always stays above the horizon during the polar day period. 
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404 In 1990-2019, the average DGSR during the polar day period varies between 26 

405 MJ/m2 and 31 MJ/m2. However, the annual average DGSR varies from 9.6 MJ/m2 to 

406 10.8 MJ/m2. Therefore, the anomaly values and the range of variation during the polar 

407 day period are higher than those during all days of the year. The anomaly values 

408 during the period of all days of the year except for polar day and polar night alternate 

409 between positive and negative, indicating that the change in total solar radiation 

410 during this period basically has no obvious trend. The maximum value of the annual 

411 anomalies occurred during approximately 2004/05 and is mainly related to the days 

412 with precipitation (such as snowfall, which can result in low visibility and then 

413 decreased sunshine duration and solar radiation) at Zhongshan Station in Antarctica. 

414 In contrast to scenario 3 (all days of the year except for polar day and polar night), 

415 scenario 2 (the polar day period) and scenario 1 (annual) have similar trends in the 

416 anomalies (and the sunshine duration during the polar day period accounts for 

417 approximately 45% of the total sunshine duration of each year), indicating that the 

418 changes in sunshine duration and DGSR during the polar day period play a leading 

419 role in the changes in the trend of the DGSR annual anomalies.

420 Based on Student’s t tests, the sliding trends of DGSR for all situations are shown 

421 in Figure 7d to Figure 7f to present a more comprehensive analysis of the annual 

422 trends. Sliding trends were calculated for the three scenarios, starting in each year 

423 from 1990 to 2015 and ending in 2019 with increments of at least 5 years. As shown 

424 in scenario 1 (all days of the year), the trend of DGSR increased from 1990 to 2003 

425 (although an opposite trend was found during approximately 1993 and 1995), then 
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426 declined sharply after 2004 (especially in scenario 2: the polar day period) and 

427 slightly increased in 2012. The sliding trends for scenario 3 (all days of the year 

428 except for polar day and polar night) were smaller and relatively stable compared with 

429 those for the other scenarios. When the running mean window was longer than 15 

430 years, the DGSR trends first increased and then decreased in scenario 3 (all days of 

431 the year except for polar day and polar night), and most of the trends were statistically 

432 significant.

433 3.4 The potential impact factors of DGSR

434 DGSR is affected by cloud cover, water vapor, and aerosols before reaching the 

435 surface (Che et al., 2005). However, aerosols are relatively low over the Antarctic, so 

436 they will not be discussed in this study. In contrast, bad weather events (fog, snowfall, 

437 blowing snow and snowstorms) with low visibility are frequent at Antarctic 

438 Zhongshan Station and will also affect the DGSR. Therefore, the effects of cloud 

439 fraction, low cloud fraction, ground vapor pressure (e, which represents atmospheric 

440 water vapor content), and visibility (which represents bad weather events) on the 

441 DGSR at this station are further detailed and explicitly analyzed. Note that the solar 

442 radiation is greatly affected by the solar altitude angle in the polar region (which has 

443 the phenomena of polar day and polar night). To avoid the effects of these phenomena 

444 and analyze the influence of potential factors on solar radiation, we selected only the 

445 matched samples of April and September each year for discussion in this study. Here, 

446 all the matched samples were divided into five subsets according to cloud cover 
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447 (0-20%, 20-40%, 40-60%, 60-80% and 80-100%), low cloud cover (0-20%, 20-40%, 

448 40-60%, 60-80% and 80-100%) and ground vapor pressure (0-1 hPa, 1-2 hPa, 2-3 

449 hPa, 3-4 hPa and >4 hPa), and then the average DGSR was calculated for each subset, 

450 and the results are shown in Figure 8a, 8b and 8c, respectively. Similarly, the matched 

451 samples were divided into six subsets according to visibility (0-5 km, 5-10 km, 10-15 

452 km, 15-20 km, 20-25 km and >25 km), then the average DGSR was calculated for 

453 each subset (see Figure 8d for the results).

454 We found that the DGSR significantly decreased (significantly increased) with 

455 increasing cloud fraction and ground vapor pressure (visibility). This is because under 

456 cloudy conditions, solar radiation reflects back to the top of the atmosphere, reducing 

457 the amount of solar radiation reaching the Earth’s surface. However, the DGSR did 

458 not change much when the low cloud fraction was greater than 40%. We also found 

459 that DGSR was generally low during severe weather with low visibility but 

460 significantly higher under high visibility conditions. Overall, the DGSR decreases 

461 with increasing cloud cover, low cloud cover and ground vapor pressure but increases 

462 with increasing visibility. The change in DGSR with low cloud cover is not 

463 significant with the change in cloud cover, ground vapor pressure and visibility. 

464 Meanwhile, the times series of DGSR, LCF, CF, e, Vis, and SSD and their long-term 

465 trends are examined in Fig. S4, respectively. The DGSR shows a small upward trend. 

466 Accordingly, SSD and Vis exhibit upward trends (CF, LCF and e exhibit downward 

467 trends), implying that the cloud cover, water vapor and abnormal weather (except as 

468 solar altitude angle in the polar region) are the common factors that influence the 
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469 trend of DGSR at this station. To sum up, clouds and water vapor in the atmosphere 

470 are the main factors affecting solar radiation. Bad weather conditions, such as fog, 

471 blowing snow and snowstorms, are also a major factor affecting solar radiation at 

472 Zhongshan Station, Antarctica.

473 4. Concluding remarks

474 Based on ground meteorological observation data, an RF model was developed to 

475 estimate DGSR, and a high-precision, long-term DGSR dataset was constructed for 

476 1989 to 2020 at Zhongshan Station, Antarctica. Long-term trends and the potential 

477 impact factors of DGSR were then analyzed in this study. Compared with those of 

478 other models, we found that the fitted and 10-fold CV results of the RF model have 

479 higher R2 values and lower RMSE and MAE, and the hindcast estimated DGSR 

480 presents good consistency with the observed DGSR (R2 = 0.984, RMSE = 1.377 

481 MJ/m2, and MAE=0.828 MJ/m2). The RF model is better than other models for 

482 reconstructing the historical DGSR based on the meteorological observations in this 

483 study. The DGSR trends were very consistent in all situations, and DGSR generally 

484 increased during 1989-2004 and then began to decrease after 2004. The sliding trend 

485 of DGSR in the all days of the year except for polar night period and the polar day 

486 period increased from 1990 to 2003 (although an opposite trend was found during 

487 approximately 1993 and 1995 for the all days of the year except for polar night 

488 period), then declined sharply after 2004 and slightly increased in 2012, while the 

489 sliding trends for the period of all days of the year except for polar day and polar 

490 night were smaller and relatively stable. The DGSR decreases with increasing cloud 

491 cover, low cloud cover and ground vapor pressure but increases with increasing 

492 visibility. The results show that clouds and water vapor are the main factors affecting 

493 solar radiation in Antarctica. Meanwhile, bad weather conditions, such as fog, 

494 blowing snow and snowstorms, are also a major factor affecting solar radiation at 

495 Zhongshan Station, Antarctica. Based on the DGSR estimation method in this study, 
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496 our plan for future work can be divided into two parts: the first part is to construct a 

497 virtual DGSR observation network across the Antarctic region, and the second part is 

498 to reconstruct historical site-scale DGSR concentrations through this newly 

499 constructed virtual DGSR observation network. It is worth noting that some sites in 

500 remote areas of Antarctica lack DGSR datasets. Therefore, these high-precision, 

501 long-term DGSR datasets can be used to study the radiation balance and the ultimate 

502 source of solar energy in Antarctica.
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678 Table 1. The short name, definition and sensor type of variables.

Variable Unit Definition Sensor type
SP hPa Atmospheric pressure Vaisala PTB220
RH % Relative humidity Vaisala HMP35D
Tem °C Surface air temperature Vaisala HMP35D
WS m/s Wind speed XFY3-1
SSD h Sunshine duration Australia DSU12
GSR MJ/m2 Global solar radiation TBQ-2-B
CF % Cloud fraction -
LCF % Low cloud fraction -
Vis km Visibility -
WVP hPa Ground vapor pressure -
DGSR MJ/m2 Sum of global solar radiation over a day -
DOY - Day of year -
Month - Month of year -

679
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680 Table 2. The final selected values of the main parameters for each model.

Model name Parameter Final value

n_estimators 500

oob_score TrueRF

n_jobs 2

n_estimators 3500

num_leaves 600

learning_rate 0.05

LightGBM

max_depth 18

max_depth 16

learning_rate 0.1XGBoost

n_estimators 700

n_estimators 750

Learning_rate 0.5GBRT

Max_depth 3

Solver adam

Alpha 1e-5BP

hidden-layer-sizes 1000,500,100

SVM tol 0.000001

AdBoost n_estimators 500

MLR -- --

DT -- --

681 --: Indicates the model parameter value was set as the default.

682
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683 Table 3. The results of the fitted model, 10-fold CV model and historical estimation 

684 power by different machine learning models.

Fitted model 10-fold CV model Historical estimation powerModel 
name R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE
RF 0.998 0.434 0.238 0.988 1.183 0.648 0.984 1.494 0.846

LightGBM 0.999 0.039 0.027 0.987 1.22 0.78 0.982 1.481 0.884
XGBoost 0.999 0.001 0.013 0.987 1.236 0.678 0.982 1.469 0.845

BP 0.982 1.581 1.132 0.982 1.604 1.151 0.978 1.861 1.370
GBRT 0.999 0.398 0.185 0.98 1.541 0.98 0.974 1.541 0.980

DT 0.998 0.533 0.314 0.976 1.692 0.919 0.967 1.999 1.146
AdBoost 0.962 3.487 3.063 0.959 3.535 3.097 0.961 3.417 3.097

SVM 0.892 5.561 4.755 0.892 5.498 4.687 0.897 3.865 2.980
MLR 0.895 3.498 2.773 0.895 3.500 2.777 0.882 3.778 2.988
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686

687 Fig. 1. (a) Map showing the location of Zhongshan Station, (b) image of Zhongshan 

688 Station area, and (c) the solar radiation instrument in the meteorological observation 

689 field.
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690

691 Fig. 2. Steps of historical estimation and long-term trend analysis of DGSR at 

692 Zhongshan Station, Antarctica.in 
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693

694 Fig. 3. The frequency distribution of (a) observed DGSR, (b) SP, (c) Tem, (d) RH, (e) 

695 WS, and (f) SSD at Zhongshan Station, Antarctica during 2010-2020 for model 

696 training and cross-validation.

697
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698

699 Fig. 4. Scatterplots of the (a) fitted model, (b) CV model and (c) hindcast estimation 

700 results of the RF model at Zhongshan Station, Antarctica.

701
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702

703 Fig. 5. The (a) time series of observed (blue) versus estimated (red) DGSR and the (b) 

704 corresponding difference (observed DGSR - estimated DGSR) in 2009 at Zhongshan 

705 Station, Antarctica. [-2, 2] indicates a difference within ±2 MJ/m2.

706
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707

708 Fig. 6. The monthly variation in (a) DGSR (estimated), (b) SP, (c) Tem, (d) RH, (e) 

709 WS, and (f) SSD at Zhongshan Station, Antarctica during 1990-2019.
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710

711 Fig. 7. Time series of the annual mean anomalies of estimated DGSR: (a) annual 

712 mean but no polar night, (b) polar day and (c) no polar day and no polar night. The 

713 red lines indicate the 5-year running means of the DGSR anomalies. Sliding-window 

714 trend analyses of annual mean estimated DGSR at Zhongshan Station, Antarctica, 

715 from 1990 to 2019 for (d) all years but no polar night, (e) polar day and (f) no polar 

716 day and no polar night.
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717

718 Fig. 8. The effect on the estimated DGSR by the different (a) CF, (b) LCF, (c) e, and 

719 (d) Vis conditions at Zhongshan Station, Antarctica. 

in 
pre

ss



720 Supplementary Information

721

722 Figure S1. Evaluation of the relative importance of the variables used in the RF 

723 models. SSD: sunshine duration; DOY: day of year; Tem: air temperature; WS: wind 

724 speed; RH: relative humidity; SP: surface air pressure.
725
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726

727

728 Fig. S2. The (a) annual change in observed (blue) versus estimated (red) DGSR and 

729 the (b) corresponding difference (observed DGSR - estimated DGSR) from 2009 to 

730 2019 at Zhongshan Station, Antarctica.
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732

733 Fig. S3. The (a) annual change in observed (blue) versus estimated (red) DGSR and 

734 the (b) annual change in SSD from 1990 to 2019 at Zhongshan Station, Antarctica.

735
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736

737 Fig. S4. The yearly series of (a) DGSR (estimated), (b) LCF, (c) CF, (d) e, (e) Vis, 

738 and (f) SSD at Zhongshan Station, Antarctica from 1990 to 2019 for no polar day and 

739 no polar night. The blue lines indicate their corresponding 5-year running mean 

740 values and straight lines indicate their corresponding linear trends.
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