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29 ABSTRACT

30 Terrestrial ecosystems are an important part of Earth systems, and they are 

31 undergoing remarkable changes in response to global warming. This study 

32 investigates the response of terrestrial vegetation distribution and carbon fluxes to 

33 global warming by using the new dynamic global vegetation model in the second 

34 version of the Chinese Academy of Sciences (CAS) Earth System Model (CAS-

35 ESM2). We conducted two sets of simulations, the present-day simulation and the 

36 future simulation, which were forced by the present-day climate during 1981–2000 

37 and the future climate during 2081–2100, respectively, derived from RCP8.5 outputs 

38 in CMIP5. CO2 concentration is kept constant in all simulations to isolate CO2-

39 fertilization effects. The results show an overall increase in vegetation coverage in 

40 response to global warming, which is the net result of the greening in the mid-high 

41 latitudes and the browning in the tropics. The results also show an enhancement in 

42 carbon fluxes in response to global warming, including gross primary productivity, 

43 net primary productivity and autotrophic respiration. We found that the changes in 

44 vegetation coverage were significantly correlated with changes in surface air 

45 temperature, reflecting the dominant role of temperature, while the changes in carbon 

46 fluxes were caused by the combined effects of leaf area index, temperature, and 

47 precipitation. This study applies CAS-ESM2 to investigate the response of terrestrial 

48 ecosystems to climate warming. Even though the results are limited by isolating CO2-

49 fertilization effects, this application is still favorable to better understand vegetation 

50 processes and to further improve model parameterizations.
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51 Key words: global warming, vegetation distribution, carbon flux, leaf area index, 

52 surface air temperature

53 Article Highlights:

54  The projected vegetation coverage and carbon fluxes show an overall increase 

55 under global warming.

56  Surface air temperature is the dominant driver of changes in vegetation 

57 distribution. 

58  Changes in carbon fluxes are caused by the combined effects of leaf area index, 

59 temperature, and precipitation.

60 https://doi.org/10.1007/s00376-021-1138-3 

61 1. Introduction

62 Terrestrial ecosystems are an important part of Earth systems. They regulate the 

63 exchanges of energy and water mass between the land surface and atmosphere via 

64 evapotranspiration and provide organic carbon via photosynthesis. The change in 

65 terrestrial ecosystems is tightly coupled with climate, which is undergoing significant 

66 warming (Diffenbaugh and Field, 2013; Zhu et al., 2016; Yin et al., 2018; Liu et al., 

67 2019). How terrestrial ecosystems respond to global warming has been a hot research 

68 topic as the responses are of great significance for accurately projecting future 

69 vegetation dynamics and climate change (Woodward, 1987; Nemani et al., 2003; 

70 Schaphoff et al., 2016; Eric et al., 2018; Fan et al., 2019).
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71 In response to global warming, land vegetation distribution and productivity have 

72 shown considerable changes over the past few decades (Cramer et al., 2001; Fraser et 

73 al., 2011; Cao et al., 2019). One of the significant changes is a poleward “greening” 

74 expansion in the middle and high latitudes (Sturm et al., 2001; Walker et al., 2006; Bi 

75 et al., 2013; Mao et al., 2016; Zhu et al., 2016; Piao et al., 2020; Tømmervik et al., 

76 2020). For example, forests in Europe were projected to expand northward and 

77 contribute to a shrinkage of the tundra area (Shiyatov et al., 2005; Frost and Epstein, 

78 2014; Kreplin et al., 2021), with a similar expansion found in North America (Field et 

79 al., 2007, Yu et al., 2014). In Northeast China, Hu et al. (2021) found obvious 

80 vegetation greening. The results shown by Madani et al. (2020) indicated increasing 

81 trends in annual gross primary productivity (GPP) in the northern tundra and boreal 

82 ecosystems. The greening of Arctic ecosystems has shown an increased biomass and 

83 abundance in boreal shrubs (Myers-Smith et al., 2011, 2020; Mekonnen et al., 2021). 

84 Several studies have reported that warming is a key factor that accelerates the 

85 “greening” by enhancing vegetation photosynthesis and extending the length of the 

86 growing season (Piao et al., 2007; Andreu-Hayles et al., 2011; Keenan and Riley, 

87 2018). In the tropics, the response of vegetation to warming is different from that in 

88 mid-high latitudes (Corlett, 2011). A number of studies have shown a decrease in the 

89 tropical forest growth rate and productivity in response to warming, which could be 

90 the consequence of a reduction in leaf photosynthesis under higher temperature (Clark 

91 et al., 2003; Doughty and Goulden, 2008; Gao et al., 2019; Huang et al., 2019). The 

92 decrease in water availability associated with higher temperature is reported to result 
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93 in a decrease in leaf area index (LAI) and net primary productivity (NPP) in Amazon 

94 and South Africa and a decrease in forest coverage in the central and southern Mexico 

95 (Mackay, 2007; Yu et al., 2014; Gang et al., 2017). These studies all indicate that 

96 terrestrial ecosystems have undergone remarkable changes in vegetation distribution 

97 and productivity due to global warming, and these changes will continue if global 

98 warming continues in the future.

99 Nowadays, Dynamic Global Vegetation Models (DGVMs) have become widely 

100 used tools to investigate and predict the responses of terrestrial ecosystems to future 

101 climate change. They can simulate and project the patterns, dynamics and structure, 

102 and biogeochemical cycles of vegetation under past, present and future climatic 

103 conditions (Scheiter et al., 2013; Smith et al., 2014). Many DGVMs have been used to 

104 run offline simulations with different climatic scenarios to predict the responses of 

105 vegetation to changes in climate or atmospheric CO2 (Woodward and Lomas, 2004; 

106 Shafer et al., 2015; Zhang et al., 2015). In addition, some DGVMs are coupled with 

107 general circulation models (GCMs) to investigate interactions between vegetation 

108 dynamics and climate change (Raddatz et al., 2007; Brovkin et al., 2009; Quillet et al., 

109 2010; Hawkins et al., 2019; Wu et al., 2019; Arora et al., 2020; Shevliakova et al., 

110 2020; Yu et al., 2021).

111 However, the simulated vegetation responses to climate change by DGVMs  

112 remain uncertain (Prentice et al., 2007; Sitch et al., 2008; Liu et al., 2018; Sulman et 

113 al., 2019; Scheiter et al., 2020; Horvath et al., 2021). Falloon et al. (2012) reported 

114 that DGVMs simulated different, even opposite vegetation changes in northern high 
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115 latitudes in response to climate change. In the North China Plain, the predicted 

116 potential vegetation is bare ground, whereas in fact, it is dominated by irrigated 

117 cropland (Suchul and Eltahir, 2018). South Asian savanna ecosystems are often 

118 misinterpreted by DGVMs as degraded forests (Kumar and Scheiter, 2019). In 

119 addition, the estimation of GPP often differed among DGVMs (McGuire et al., 2001; 

120 Jung et al., 2007; Piao et al., 2013; Anav et al., 2015) due to different representations 

121 of ecological processes and parameter uncertainties (Knorr and Heimann, 2001; 

122 Gurney et al., 2004; De Kauwe et al., 2014). Gang et al. (2017) argued that large 

123 uncertainties among DGVMs may relate to the differences in recognition of the 

124 vegetation types and the land surface processes that evolved. These reported 

125 uncertainties reflect the complexity of vegetation responses to climate change, and 

126 thus more investigation is needed to understand vegetation processes and 

127 parameterizations in DGVMs. 

128  A new DGVM developed at the Institute of Atmospheric Physics (IAP-DGVM; 

129 Zeng et al., 2014) has been coupled with the second version of the Chinese Academy 

130 of Sciences Earth System Model (CAS-ESM2). The coupled results showed a good 

131 performance in reproducing the present-day vegetation distribution and carbon fluxes 

132 (Zhu et al., 2018). In addition, IAP-DGVM simulated a positive trend in LAI over 

133 northern mid-high latitudes during the period 1972–2004, which was consistent with 

134 that of LAI3g, with a significant correlation coefficient 0.48 (P<0.05) (Fig. S1). The 

135 consistency illustrates that IAP-DGVM has a good ability to reproduce the greening 

136 trend of vegetation over northern mid-high latitudes in response to climate change 
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137 during the historical period. Thus, this study focuses on IAP-DGVM projections of 

138 vegetation distribution and carbon fluxes in response to global warming in the future. 

139 To narrow down the uncertainties in the forcing datasets, a method (seen Section 2) is 

140 used to produce the forcing datasets based on multi-model outputs from the Coupled 

141 Model Intercomparison Project Phase 5 (CMIP5) instead of using them directly. We, 

142 on the one hand, report the simulated changes in vegetation distribution and carbon 

143 fluxes in response to global warming. More importantly, we further investigate the 

144 dominant driver of the changes and discuss the underlying causes. The investigation is 

145 favorable for a better understanding of vegetation processes and for a further 

146 improvement in the model parameterizations. Moreover, the results provide a valuable 

147 sample for comparison not only for the CAS-ESM2 community but also for other 

148 model communities.

149 2. Model description and experimental design

150 2.1. Model description

151 IAP-DGVM, which was first released in 2014 (Zeng et al., 2014), was used in 

152 this study. IAP-DGVM classifies natural plants into 14 plant functional types (PFTs) 

153 and does not simulate crops now (Table S1). The vegetation model has made 

154 significant developments that mainly include the shrub sub-model (Zeng et al., 2008; 

155 Zeng, 2010), the process-based fire parameterization of intermediate complexity (Li et 

156 al., 2012) and the new establishment and competition parameterization schemes 

157 (Song, 2016). These characteristics improve the performance of IAP-DGVM in 
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158 simulating the fractional coverage of present-day vegetation and land carbon fluxes 

159 (Zeng, 2010; Zeng et al., 2014; Zhu et al., 2018). Thus, IAP-DGVM has been coupled 

160 with CAS-ESM2 to investigate vegetation-climate interactions (Zhu et al., 2018; 

161 Zhang et al., 2020).

162 2.2. Experimental design

163 This study aims to investigate the possible changes in vegetation distribution and 

164 carbon fluxes under global warming. The scenario for Representative Concentration 

165 Pathway 8.5 (RCP8.5) was selected to represent a possible scenario of future global 

166 warming and the climate in the period 2081–2100 was selected to represent the future 

167 climate. We downloaded atmospheric forcing variables, six-hourly precipitation and 

168 solar radiation, three-hourly surface air temperature, surface pressure, specific 

169 humidity and wind, from outputs of historical and RCP8.5 simulations of 16 models 

170 that participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

171 (Table S2). We recalculated the RCP8.5 outputs as the following. 

172 2081 2100 1981 2000new Qian( ) 8.5 ( )              1982,1982, 2000V V     K，i RCP Hist i i

173 where  and  are the 20-year averages for the period 2081–2081 21008.5RCP  1981 2000Hist 

174 2100 in CMIP5 RCP8.5 simulations and the period 1981–2000 in CMIP5 historical 

175 simulations, respectively. Their differences mean the future climate changes predicted 

176 by each CMIP5 model. By adding these differences to the present-day forcing data (

177 ), we finally derived the new future forcing datasets ( ). This method can QianV newV

178 reduce the dependence on CMIP5 models and the uncertainties in future forcing 

179 datasets and is comparable to the present-day forcing data from Qian et al. (2006).
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180 This study conducted a few simulations, including the spin-up simulation (Fig. 

181 S2). We first drove IAP-DGVM from bare ground for 660 model years to approach an 

182 equilibrium state by cycling the atmospheric forcing data during the period 1972–

183 2004 from Qian et al. (2006). Then, we further conducted two sets of simulations, the 

184 present-day simulation (hereafter Pre) and the future simulation (hereafter RCP8.5). 

185 The Pre simulation was forced by the atmospheric data during 1972–2004 from Qian 

186 et al. (2006) and ran for 33 model years, while the RCP8.5 simulations were forced by 

187 the recalculated datasets described above and ran for 600 model years to approach 

188 another equilibrium state. We compared the results between the Pre simulation for the 

189 period 1981–2000 and the RCP8.5 simulations for the period 2081–2100. To 

190 investigate the effects of climate factors on vegetation dynamics, we fixed 

191 atmospheric CO2 concentration at a constant value of 367.00 ppm in all simulations to 

192 isolate the effects of CO2 fertilization. All the simulations were run with a T85 

193 resolution (128×256 grid cells). Finally, we obtained future changes in vegetation 

194 distribution and carbon fluxes from the differences among the results of one present-

195 day simulation and 16 RCP8.5 simulations. To reduce the effects of cropland, we 

196 weighted the vegetation coverage by a factor of (100%– ) in each grid cell, cropFC

197 where  represents the fractional coverage of crops (Zeng et al., 2014).cropFC

198 3. Results 

199 3.1. Surface climate change
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200 The projected future land surface shows an overall warm and wet change relative 

201 to the present day (Fig. 1). Globally, the annual mean surface air temperature in the 

202 future is 4.87±1.14 K higher than that in the present day. The positive temperature 

203 anomalies are stronger over northern high latitudes than in other regions and are 

204 projected by all 16 selected models (Fig. 1a). Meanwhile, the projected global mean 

205 precipitation is 0.45±0.07 mm day–1 higher than that in the present day. The positive 

206 precipitation anomalies are more pronounced in several regions, such as western and 

207 eastern North America, Europe, northeast and southeast Asia, equatorial Africa, and 

208 southern South America. However, negative precipitation anomalies are seen over 

209 Amazon, the region showing larger uncertainties in the projected precipitation among 

210 models than other regions (Fig. 1b). These climate anomalies are qualitatively 

211 consistent with a large body of published studies that reported future predictions of 

212 global warming and the possible drying of tropical regions in the future (Yu et al., 

213 2014; Yin et al., 2018; Tømmervik and Forbes, 2020; Wibowo et al., 2020).

214 3.2. Vegetation distribution 

215 We first analyzed the changes in vegetation distributions for the four aggregated 

216 vegetation types (trees, shrubs, grasses and bare ground) between the RCP8.5 

217 experiments and the present-day experiment. In general, there is a greening anomaly 

218 in the middle and high latitudes of the northern hemisphere (30°N–90°N) with 

219 10.10% more projected vegetation. Trees and grasses contribute the most to the 

220 positive anomaly, while shrubs show a negative anomaly (Table 1). In contrast, there 

221 is a slight negative anomaly in the tropics (30°S–30°N) with 3.72% less projected 
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222 vegetation. Grasses and shrubs contribute the most to the negative anomaly, while 

223 trees show almost no changes (Table 1). 

224 Figure 2 shows a poleward expansion of the projected vegetation. The 

225 vegetation-growing regions in the RCP8.5 experiments are farther north than those in 

226 the present-day experiment, with 10°, 5° and 7° for trees, shrubs and grasses, 

227 respectively. The spatial distribution shows that the poleward expansion mainly 

228 occurred in northern Canada and Siberia for trees and grasses and in northeastern 

229 Canada for shrubs (Fig. S3). These results are qualitatively consistent with previous 

230 studies based on other multiple GCMs (Alo and Wang, 2008; Yu et al., 2014; Gang et 

231 al., 2017) and with some observation-based studies (Speed et al., 2010; Vickers et al., 

232 2016), indicating a poleward expansion of vegetation over mid-high latitudes in the 

233 future.

234 The changes in vegetation distribution can be seen more directly by an estimation 

235 of the differences in the four aggregated vegetation between the two scenarios (Fig. 

236 2). Over northern mid-high latitudes, the increase in trees in the RCP8.5 experiments 

237 is mainly in Alaska, eastern Canada and Siberia. However, a decrease in trees is also 

238 seen in central Canada, Western Siberia, and Northeast China. The decreased shrubs 

239 mainly occurred in northwestern Canada, western America and eastern Siberia and are 

240 correspondingly replaced by the increased grasses. Over the tropics, the decreased 

241 grasses and shrubs shown in Figure 2 mainly occurred in tropical Africa and 

242 Australia, with 8.57% and 3.00%, respectively. Trees in tropical America decreased 

243 by 4.89%, even though the whole tropical trees showed almost no changes. Figure 2 
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244 also illustrates that the changes in the projected vegetation in above mentioned 

245 regions are consistent among the selected 16 models. 

246 To figure out the contribution of each PFT to the four aggregated vegetation, we 

247 further compared the fractional coverage of vegetation at the PFT level in the two 

248 scenarios (Fig. 3). The increased trees shown in Figure 2 are dominantly contributed 

249 by “broadleaf deciduous temperate tree” (BDM; 3.37%), while “needleleaf evergreen 

250 boreal tree” (NEB) makes the largest negative contribution with a decrease by 1.13%. 

251 The decreased shrubs in the future are dominated by the decreased “broadleaf 

252 deciduous boreal shrub” (BDBsh; –5.18%). For the increased grasses, positive 

253 contributions are mainly from “C3 arctic grass” (C3Ar; 3.74%) and “C3 non-arctic 

254 grass” (C3NA; 4.17%), but “C4 grass” (C4) makes a negative contribution with 

255 2.01%. The six mentioned PFTs show the largest sensitivities to the global warming 

256 and are the main contributors to the global vegetation changes.

257 3.3. LAI  

258 Over the whole globe, the projected LAI in the RCP8.5 experiments increased by 

259 0.65±0.30 m2 m–2, relative to the present-day experiment. This increase is seen over 

260 most latitudes, especially in the middle and high latitudes (Fig. 4b). Figure 4a shows 

261 the spatial pattern of the differences in LAI between the RCP8.5 experiments and the 

262 present-day experiment. Over northern mid-high latitudes, the increased LAI mainly 

263 occurred in Alaska, eastern Canada, central North America, and eastern Siberia, with 

264 more than 2.00 m2 m–2. However, a strong decrease in LAI is also seen in central 

265 Canada, Western Siberia, and Northeast China, the regions showing the projected 
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266 replacement of trees and shrubs by grasses (Fig. 2). Over the tropics, the projected 

267 LAI decreased in Amazon and equatorial Africa by exceeding 1.00 m2 m–2, while 

268 southeastern Asia showed an increase in the projected LAI by more than 1.00 m2 m–2. 

269 3.4. Carbon fluxes  

270 The analysis here focuses on the changes of carbon fluxes for GPP, NPP and 

271 autotrophic respiration (Ra) between the RCP8.5 experiments and the present-day 

272 experiment. Globally, positive anomalies were observed for all the three carbon fluxes 

273 (Fig. 5). GPP shows the largest anomaly with 18.36±5.52%, which is followed by Ra 

274 and NPP, with 12.32±3.24% and 6.04±2.42%, respectively. Considering that the 

275 CO2 concentration is same in all simulations, the overall positive anomalies in GPP 

276 and NPP are caused by the warmer and wetter climate in the future, a favorable 

277 climatic condition that can enhance photosynthesis by lengthening the growing season 

278 or by reducing water limitation. Further analysis is shown in Section 4.

279 Figure 6 clearly shows that the positive anomalies occurred over most of the 

280 latitudes, while negative anomalies were seen over a few tropical latitudes. The spatial 

281 patterns further show that the positive anomalies are more globally widespread than 

282 the negative anomalies (Fig. 6a, Fig. 6c and Fig. 6e). Over middle and high latitudes, 

283 the regions with remarkable positive anomalies are mainly in Alaska, eastern North 

284 America, Europe, eastern Siberia, and southern South America. Regions with negative 

285 or slightly positive anomalies are seen in Northeast China and Western Siberia. Over 

286 the tropics, the negative anomalies of the three carbon fluxes are observed mainly in 

287 Amazon, while tropical Asia shows remarkable positive anomalies. Figure 6 also 
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288 illustrates that the projected positive anomalies are more consistent than the projected 

289 negative anomalies among the 16 RCP8.5 experiments, which reflects more 

290 uncertainties in the projected carbon fluxes over regions with negative changes.

291 4. Discussion

292 4.1. Linkage between climate and vegetation anomalies

293 To investigate drivers of the changes in vegetation distribution, we further 

294 analyzed the relationships between the changes in fractional coverage (FC) of the 

295 above mentioned six PFTs and temperature, precipitation, respectively (Fig. 7). The 

296 changes in temperature are significantly and negatively correlated with the changes in 

297 “needleleaf evergreen boreal tree” (NEB), “broadleaf deciduous boreal shrub” 

298 (BDBsh) and “C4 grass” (C4), with correlation coefficients (cc) of –0.89, –0.65 and –

299 0.51, respectively. In contrast, significantly positive correlations are seen between the 

300 changes in temperature and “broadleaf deciduous temperate tree” (BDM; cc=0.88), 

301 “C3 arctic grass” (C3Ar; cc=0.85) and “C3 non-arctic grass” (C3NA; cc=0.64). 

302 Figure 7b shows that the changes in precipitation are significantly correlated with the 

303 changes in NEB (cc=–0.48), BDBsh (cc=–0.60), and C3Ar (cc=0.63), while the 

304 correlations for the other three PFTs are not significant. Together with the partial 

305 correlation coefficients (Table S3), the stronger correlations between fractional 

306 coverage of vegetation and surface air temperature indicate that temperature is the 

307 dominant driver of the changes in vegetation distribution relative to precipitation.
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308 The dominant role of surface air temperature in driving vegetation distribution 

309 reflects that temperature is a key limiting factor for vegetation growth. The warmer 

310 climate in the future can lead to an expansion of the growing season and increased 

311 photosynthesis rates in the boreal and temperate regions.  High temperatures also lead 

312 to higher mortality rates for boreal woods (NEB and BDBsh) due to heat stress and 

313 thus a decrease in FC. However, the heat stress is neglected in DGVMs for temperate 

314 vegetation which is adjusted to the warm climate, and thus results in an increase in FC 

315 for BDM and C3 grasses. For C4 grass that grows in the tropics (Fig. S4), warming 

316 has little or even negative impacts on the rate of photosynthesis but significantly 

317 increases the rate of respiration, thus suppresses productivity and leads to a decreased 

318 FC.

319 We next investigate the relationship between projected changes in the three 

320 carbon fluxes and changes in LAI, surface air temperature, and precipitation. The 

321 three carbon fluxes are known to be impacted greatly by LAI, temperature, and 

322 precipitation. Their net effects can be very different in different ecosystems, so the 

323 changes in the three carbon fluxes show large differences. Thus, we selected six 

324 regions (Table S4) to discuss these differences by using region boundaries defined in 

325 previous studies (Giorgi and Francisco, 2000; Xue et al., 2010). In these regions, the 

326 projected changes in the three carbon fluxes are either remarkably increased, slightly 

327 increased, or decreased (Fig. S5).

328 Over northern mid-high latitudes, it is known that an increase in LAI, 

329 temperature, and precipitation is generally favorable for an increase in GPP, NPP, and 
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330 Ra. Figure 8 shows a remarkable increase in the projected carbon fluxes in Alaska 

331 (ALA), Northern Europe (NEU), and eastern North America (ENA). The increases 

332 are positively contributed by combined effects resulting from increases in LAI, 

333 temperature, and precipitation. However, in Western Siberia (WSI), the replacement 

334 of trees and shrubs by grasses (Fig. S6) leads to a decrease in LAI and in the carbon 

335 fluxes, which partly offsets the increase in the carbon fluxes caused by the increased 

336 temperature and precipitation. The net result ultimately leads to a slight increment of 

337 the carbon fluxes by no more than 0.50 PgC yr–1 in WSI. 

338 Over the tropics, warmer climate anomalies may reduce vegetation productivity 

339 due to a suppression of photosynthesis caused by a higher vapor pressure deficit, 

340 while wetter climate anomalies can enhance vegetation productivity by reducing 

341 water stress. Figure 8 shows weaker positive anomalies in the projected temperature 

342 and stronger positive anomalies in the projected precipitation in Southeast Asia (SEA) 

343 than in the Amazon Basin (AMZ). These differences, on one hand, explain the 

344 opposite responses in the carbon fluxes in the two regions. On the other hand, the 

345 increased LAI caused by increased trees in SEA also makes large contributions to the 

346 enhanced carbon fluxes, while the decreased LAI caused by decreased trees in AMZ 

347 makes large contributions to the decreased carbon fluxes. Overall, the combination of 

348 the effects caused by LAI, temperature and precipitation results in the opposite 

349 behaviors of SEA and AMZ on the responses of carbon fluxes. 

350 4.2. Uncertainties and significance
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351 This work mainly focuses on the impact of climate warming on vegetation 

352 dynamics and carbon fluxes, so the atmospheric CO2 concentration is kept at a 

353 constant value in all simulations to isolate CO2 fertilization effects. This set may 

354 influence our full understanding of vegetation responses. Thus, we further conducted 

355 a simulation with an elevated CO2 of 850 ppm (hereafter eCO2) by referring to Yu et 

356 al. (2014). We compared the results with the above results to discuss the differences 

357 in the effects of global warming and CO2 fertilization on vegetation dynamics and 

358 carbon fluxes. 

359 The results show that the eCO2 simulation also produced more vegetation than 

360 the Pre simulation. The value of the greening anomaly is comparable to that of the 

361 RCP8.5 simulation (Fig. S7). However, there is no poleward expansion of vegetation 

362 in the eCO2 simulation over the northern high latitudes (Fig. S8). The three carbon 

363 fluxes are also enhanced in the eCO2 simulation relative to the Pre simulation. Their 

364 global annual totals are comparable to those in the RCP8.5 simulation (Fig. S9). The 

365 spatial distribution shows that the enhancement of the three carbon fluxes of the eCO2 

366 simulation is seen over almost all vegetated land grids (Fig. S10), while the RCP8.5 

367 simulation shows a negative anomaly in the three carbon fluxes over more vegetated 

368 grids (Fig. 6). The comparable results between the RCP8.5 and eCO2 simulations 

369 illustrate that the effects of global warming on vegetation dynamics and carbon fluxes 

370 are as important as those of CO2 fertilization. 

371 Furthermore, in our study, the projected results were based on the forcing from 

372 the RCP8.5 scenario, which corresponds to a very high baseline emission scenario to 
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373 maximize the climate signal (Taylor et al., 2012). Liu et al. (2020) assessed the future 

374 changes in the climate-vegetation system over East Asia under different emission 

375 scenarios. They found a slight increase in vegetation cover over most of the region 

376 and the magnitude of these changes increased gradually from low to high RCPs. Thus, 

377 more simulations and analyses are needed to investigate the dependence of the results 

378 on the scenarios at the global scale. 

379 Despite the uncertainties mentioned above, our study provides valuable 

380 contributions to the development of the model and to understanding the responses of 

381 vegetation to global warming. First, the results show the opposite response to 

382 warming between “needleleaf evergreen boreal tree” (NEB) and “broadleaf deciduous 

383 temperate tree” (BDM) due to the different sets for heat stress in the model. This 

384 phenomenon reveals that the differences in parameters assigned to PFTs have 

385 significantly different effects on the vegetation in response to future climate changes. 

386 Meanwhile, this phenomenon reminds us that it is necessary to further improve the 

387 parameterization of heat stress in IAP-DGVM because of the limitation of the sets. 

388 Thus, optimizing the parameterization of vegetation processes in the model is crucial 

389 for simulating a more realistic vegetation change. Second, this study provides a case 

390 that shows an application of CAS-ESM2, studying the response of vegetation 

391 dynamic to climate change. In the process of developing IAP-DGVM, the application 

392 is a new stage after the successful coupling of IAP-DGVM with CAS-ESM2, and 

393 provides a valuable sample for comparison with both the CAS-ESM2 community and 

394 other model communities. We now have coupled IAP-DGVM with the atmospheric 
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395 general circulation model (IAP-AGCM; Zhang et al., 2013), so CAS-ESM2 can be 

396 used to investigate interactions between vegetation dynamic and climate. We now use 

397 this coupled version of CAS-ESM2 to run the Diagnostic, Evaluation and 

398 Characterization of Klima (DECK) experiments of phase 6 of the Coupled Model 

399 Intercomparison Project (CMIP6). Third, the poleward expansion of vegetation in 

400 northern mid-high latitudes simulated in our work is consistent with numerous studies 

401 on future projections (Mahowald et al., 2016; Yu et al., 2016; Gang et al., 2017; 

402 Tharammal et al., 2018) and with recent observations (Zhu et al., 2016; Zeng et al., 

403 2018; Yao et al., 2019), indicating that the “greening” trend may continue in the 

404 future. This greening can make critical feedbacks to the local climate by shading, 

405 changing surface albedo and regulating the portion of evapotranspiration between 

406 evaporation and transpiration (Blok et al., 2010; Zhu and Zeng, 2015, 2017). Our 

407 investigation shows the dominant role of surface air temperature in this greening 

408 phenomenon. The investigation is favorable for a better understanding of vegetation 

409 processes and for further knowledge of the model behavior in response to global 

410 warming, which favors projections of changes in terrestrial ecosystems and climate in 

411 the future. Overall, this work evaluates the responses of vegetation to global warming 

412 and shows the tight linkage between vegetation and climate changes, which is a 

413 necessary step for model development and a significant foundation for further study 

414 of vegetation-climate interactions.   

415 5. Summary
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416 This study investigated the changes in vegetation distribution and carbon fluxes 

417 in response to global warming by using IAP-DGVM in CAS-ESM2. The results based 

418 on the present-day simulation and RCP8.5 simulations showed a greening in the 

419 northern middle and high latitudes and a slight browning in the tropics. The results 

420 also showed positive anomalies in GPP, NPP, and Ra over most latitudes, while 

421 negative anomalies occurred in Amazon. We argued that surface air temperature is the 

422 dominant driver of the changes in vegetation distribution relative to precipitation and 

423 the changes in GPP, NPP, and Ra can be explained by the combined effects of LAI, 

424 temperature and precipitation. Our results show the application of CAS-ESM2 by 

425 simulating the response of terrestrial ecosystems to global warming and by 

426 investigating the underlying mechanisms. The investigation is favorable for a better 

427 understanding of vegetation processes and for a further improvement in the model 

428 parameterizations.
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767

768

769

770

771

772

773

774 Table 1. The changes of trees, shrubs and grasses between RCP8.5 experiments and 

775 the present-day experiment in 30°N–90°N and 30°S–30°N,  respectively. 

FCtrees FCshrubs FCgrasses FCtotal

30°N–90°N 6.39% –11.60% 15.31% 10.10%
30°S–30°N 0.002% –1.26% –2.46% –3.72%
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781

782 Fig. 1. Projected future changes of (a) annual surface air temperature (K) and (b) 

783 precipitation (mm day–1) based on the 16 CMIP5 models. The stippled regions 

784 represent grids where at least 14 of 16 models agree with the multi-model ensemble 

785 mean.
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786

787 Fig. 2. Differences in fractional coverage (units: %) of (a) trees, (c) shrubs, (e) grasses 

788 and (g) bare ground between the present-day experiment (Pre) and the RCP8.5 

789 experiments (RCP8.5) (RCP8.5 minus Pre). The stippled regions represent grids 
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790 where at least 14 of 16 models agree with the multi-model ensemble mean. (b), (d), (f) 

791 and (h) are the zonal average fractional coverage (units: %) of trees, shrubs, grasses  

792 and bare ground in Pre (blue) and RCP8.5 (red). The shaded red areas represent one 

793 standard deviation. 

794

795

796

797

798

799

800 Fig. 3. Global weighted average fractional coverage (%) of each PFT for Pre (blue) 

801 and RCP8.5 (red). The abbreviations of the PFT correspond to the information in 

802 Table S1. 
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804

805 Fig. 4. (a) Spatial distribution of differences in leaf area index (LAI) between Pre and 

806 RCP8.5 (RCP8.5 minus Pre). The stippled regions represent grids where at least 14 of 

807 16 models agree with the multi-model ensemble mean and the bars in the left bottom 

808 represent the global means of LAI in Pre (blue) and RCP8.5 (red). (b) The zonal 

809 average of LAI in the present-day experiment (Pre; blue) and the RCP8.5 experiments 

810 (RCP8.5; red), respectively. The shaded red areas represent one standard deviation. 

811 All units are m2 m–2.
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814

815 Fig. 5. Global means of carbon fluxes in Pre (blue) and RCP8.5 (red). The bars 

816 represent one standard deviation. All units are PgC yr–1.
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817

818 Fig. 6. Spatial distribution of differences between the present-day experiment (Pre) 

819 and the RCP8.5 experiments (RCP8.5) (RCP8.5 minus Pre) in (a) GPP, (c) NPP and 

820 (e) Ra. (units: gC m–2 yr–1). The stippled regions represent grids where at least 14 of 

821 16 models agree with the multi-model ensemble mean. (b), (d) and (f) are the zonal 

822 average (units: KgC m–2 yr–1) of GPP, NPP and Ra in Pre (blue) and RCP8.5 (red). 

823 The shaded red areas represent one standard deviation.
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825

826 Fig. 7. Relationship between the changes in fractional coverage (FC, %) of the six 

827 PFTs (NEB, BDM, BDBsh, C3Ar, C3NA, C4) with (a) annual mean surface 2-m 

828 temperature (K), and (b) precipitation (mm day–1) among the 16 ensembles. The 

829 changes in fractional coverage have been standardized. The lines represent the 

830 corresponding regression lines. The abbreviations of the PFT correspond to the 

831 information in Table S1.
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832

833 Fig. 8. Changes in carbon fluxes (GPP, NPP, and Ra; PgC year–1), LAI (m2 m–2), 

834 temperature (T; K) and precipitation (P; mm day–1) over the six selected regions. The 

835 abbreviations of these regions correspond to the information in Table S4. 
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