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20

21 ABSTRACT

22 Based on a simple coupled Lorenz model, we investigate how to consider a 

23 suitable initial perturbation scheme for ensemble forecasting in a multiscale system 

24 involving slow dynamics and fast dynamics. Four initial perturbation approaches are 

25 used in the ensemble forecasting experiments: random perturbation (RP), the bred 

26 vector (BV), the ensemble transform Kalman filter (ETKF) and the nonlinear local 

27 Lyapunov vector (NLLV) methods. Results show that, regardless of the method used, 

28 the ensemble averages behave indistinguishably from the control forecasts during the 

29 first few time steps. Due to different error growth in different time-scale systems, the 

30 ensemble averages perform better than the control forecast after a very short period of 

31 lead time in a fast subsystem, but after a relatively long period of time in a slow 

32 subsystem. As a result of coupled dynamic processes, whether adding perturbations to 

33 fast variables or to slow variables can contribute to an improvement in the forecasting 

34 skill for fast variables and slow variables. When it comes to the initial perturbation 

35 approaches, the NLLVs show higher forecasting skill than BVs or RPs overall. 

36 NLLVs and ETKFs had nearly equivalent prediction skill, and NLLVs won by a 

37 narrow margin. In particular, when adding perturbations to slow variables, 

38 independent perturbations (NLLVs and ETKFs) perform much better in the ensemble 

39 prediction. These results are simply implied in a real coupled air–sea model. For the 

40 prediction of oceanic variables, independent perturbations (NLLVs) and adding 
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41 perturbations to oceanic variables will be expected to perform better in the ensemble 

42 prediction. 

43 Key words: Ensemble prediction; The nonlinear local Lyapunov vector (NLLV); The 

44 ensemble transform Kalman filter (ETKF); Coupled air–sea models
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46 Article Highlights:

47  This study explores ensemble prediction in a multiscale system which involve 

48 slow dynamics and fast dynamics by multiple initial perturbation schemes; 

49  The advantages of an ensemble forecast become apparent after a very short 

50 period of time in a fast subsystem, but after a relatively long period of time in a 

51 slow subsystem.

52  When adding perturbations to slow variables in a multiscale system, independent 

53 perturbations (NLLVs and ETKFs) perform much better in the ensemble 

54 prediction. 
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67 1. Introduction

68 In recent years, air–sea coupled models which describe the interactions between 

69 the atmosphere and the ocean have been more extensively applied to simulate weather 

70 and climate phenomena (Bender et al. 2007; Larson and Kirtman 2017; Mogensen et 

71 al. 2017; Zou et al. 2016). Air–sea coupling plays an important role in the simulation 

72 of weather and climate (Dong et al. 2017; Thompson et al. 2018). In the air–sea 

73 interface, it involves material and energy exchange, with a lot of complex physical 

74 processes (Soloviev et al. 2014). The coupled models can describe these coupled 

75 feedback processes better than atmosphere-only models (Perlin et al. 2020). Hence, 

76 the simulation of the weather and climate phenomena can be improved by using a 

77 coupled air-sea model (Dong et al. 2017; Fu and Wang 2004; Ratnam et al. 2008; 

78 Wang et al. 2005).

79 However, the simulation of weather and climate phenomena using coupled air-

80 sea models involves many uncertainties, including initial condition uncertainty 

81 (Lorenz 1969, 1982) and model uncertainty (Leutbecher and Palmer 2008). The 

82 Ensemble prediction technology has been developed to deal with these uncertainties 

83 (Demeritt et al. 2007; Ehrendorfer 1997; Leith 1974). It generates ensemble members 

84 by adding perturbations to the analysis state (Magnusson et al. 2008). The ensemble 

85 mean of ensemble members can reduce the errors compared to a single forecast, and 

86 we can quantitatively estimate the probability density of a forecast state with a finite 

87 number of ensemble members (Feng et al. 2014; Froude et al. 2007; Leutbecher and 
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88 Palmer 2008). 

89 Here, we mainly focus on the ensemble prediction in relation to initial condition 

90 uncertainty. The key to constructing initial perturbations is to generate several initial 

91 states which can represent real initial uncertainty (Zhang and Krishnamurti 1999). 

92 Many ensemble initial perturbation methods have been developed in succession, such 

93 as the Monte Carlo method (also called the random perturbation (RP) method (Leith 

94 1974)), the bred vector (BV) method (Toth and Kalnay 1993, 1997), the singular 

95 vector (SV) method (Palmer 1992), the ensemble transform Kalman filter (ETKF) 

96 method (Wang and Bishop 2003), the ensemble transform with rescaling (ETR) 

97 method (Wei et al. 2008; Wei et al. 2006), the conditional nonlinear optimal 

98 perturbations (CNOPs) method (Mu and Jiang 2008) and the nonlinear local 

99 Lyapunov vector (NLLV) method (Ding et al. 2017; Feng et al. 2014; Feng et al. 

100 2016; Feng et al. 2018).

101     A surge of studies have focused on ensemble prediction in atmosphere-only or 

102 ocean-only models, but it has not been explored extensively in air–sea coupled 

103 models. Ensemble prediction in coupled models seems more complex because of the 

104 different time scales between the ocean and the atmosphere (Liu et al. 2013). An 

105 initial error can also evolve on different time scales (Vannitsem 2017). In addition, 

106 the feedback process between the coupled components makes the system highly 

107 sensitive to errors (Zhang et al. 2005). Hence, important issues in ensemble 

108 forecasting in coupled models which contain feedback processes at different time 
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109 scales remain to be explored.

110 Therefore, in this paper, we determine how to add appropriate ensemble initial 

111 perturbations to a multiscale system, based on multiple initial perturbation methods. 

112 The system is called the coupled Lorenz model, with a slow subsystem coupled with a 

113 fast subsystem (Boffetta et al. 1998; Ding and Li 2012). The fast subsystem fluctuates 

114 approximately 10 times faster than the slow subsystem, which is close to the relative 

115 time-scale between the atmosphere and the ocean (Wang et al. 2002). Therefore, we 

116 can assume the coupled Lorenz model as a toy coupled air-sea model. 

117 The remainder of this paper is organized as follows. Section 2 introduces the 

118 coupled Lorenz model and the algorithms to obtain the BVs, ETKFs and NLLVs. 

119 Section 3 presents properties of RPs, BVs, ETKFs and NLLVs in the multiscale 

120 system. Section 4 is a summary and discussion of our major findings.

121 2. Model and methodology

122 2.1. Coupled Lorenz model

123 The model used in this study is the coupled Lorenz model. It couples two simple 

124 Lorenz63 model (Lorenz 1963), with different time scales. The first characterizes the 

125 slow dynamics and the second characterizes the fast dynamics (Boffetta et al. 1998; 

126 Ding and Li 2012). It is governed by the equations

127      
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(1)

128 where the superscripts  and  denote the slow dynamics and the fast dynamics, ( )s ( )f

129 respectively. The physical parameters of the above equation are displayed in Table 1. 

130 The relative time scale  is a constant set to 10, indicating that the fast dynamics c

131 fluctuate approximately 10 times faster than the slow dynamics. It is near the relative 

132 temporal scale of between ocean and the atmosphere, which is about 9 (Wang et al. 

133 2002). The variation in the fast variables changes much faster than the variation in the 

134 slow variables (Fig. 1). The uncoupled slow and fast Lorenz models (coupling 

135 coefficients ) exhibit chaotic dynamics, with their Lyapunov exponents 0, 0s f  

136 greater than zero. Setting , the maximal Lyapunov exponent in the 210 , 10fs  

137 coupled Lorenz model has a value of 11.5, close to the value from uncoupled fast 

138 Lorenz models (Boffetta et al. 1998) indicating that it is the error growth of the fast 

139 system that determines the maximal Lyapunov exponent in the coupled Lorenz model. 

140 The associated attractor of the coupled system seems interesting from the 

141 physical parameters given in Table 1. The two-dimensional projections of the attractor 

142 are shown in Fig. 2. The fast dynamics appear to show a typical Lorenz model (Fig. 
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143 2d–f), whereas the slow dynamics seems much more chaotic, losing the “butterfly” 

144 appearance of the original Lorenz63 model (Fig. 2a–c).

145 2.2 Initial perturbation schemes

146 We use four methods to generate initial perturbations: RP, BV, ETKF and 

147 NLLV. A brief description of the BV, NLLV and ETKF methods follows.

148 2.2.1 Computation of the BVs

149 The BV method is based on the rationale that any initial random errors in the 

150 basic flow would evolve into the fastest growing directions (leading Lyapunov 

151 vectors) in the phase space (Feng et al. 2014; Toth and Kalnay 1993, 1997). The 

152 generation of BVs is as described follows. At first, a group of small initial random 

153 perturbations are added to the analysis state. After a period of integration (a breeding 

154 cycle), the differences between the control and perturbed forecasts are rescaled to the 

155 size of the initial perturbations and the rescaled difference fields will be added to the 

156 next analysis. After repeating the process for several breeding cycles, the perturbation 

157 evolves into a fast-growing perturbation, and the BVs are generated. Following 

158 mathematical language is to describe the repeated process:  

    0 ,p i c it t  
‖‖

px x
p

(2)

159 where the  and  represent the control trajectory and perturbation trajectory, cx px

160 respectively. The term represent the scaling, where  is a scaling factor and 0
‖‖

p
p 0

161 is the difference between control forecast and perturbated forecast. p
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162 2.2.2 Computation of the NLLVs

163 NLLVs are a nonlinear extension of the Lyapunov vectors (LVs) similar to BVs 

164 (Feng et al. 2014; Hou et al. 2018). Compared to BVs, different NLLVs are 

165 independent, and represent the fastest direction of error growth in different subspaces 

166 of the phase space. The generation of NLLVs is introduced below (Feng et al. 2014; 

167 Feng et al. 2016). As shown in Fig. 3, the leading NLLV (NLLV1), which is the 

168 fastest growing direction, can be obtained via a breeding process similar to the 

169 creation of a BV. In each breeding cycle, the rest of the NLLVs can be obtained via a 

170 Gram–Schmidt reorthonormalization (GSR) process (Feng et al. 2014; Wolf et al. 

171 1985). The evolved perturbations (grey dashed lines) are orthogonalized with the 

172 leading NLLV (NLLVn are orthogonalized associated with NLLV1, NLLV2, 

173 NLLV3, …, NLLVn-1). The orthogonalized perturbations are then scaled back to the 

174 initial size and enter the next breeding process. After multiple breeding cycles, the 

175 NLLVs are produced. In this paper, the breeding cycle for generating BVs and 

176 NLLVs is 0.05 time units (tus) and was repeated for 20 times. 

177 2.2.3 Computation of the ETKFs

178 The ETKF method is initially introduced by Bishop et al. (2001). The method is 

179 derived from ensemble-based data assimilation theory, which is associated with the 

180 Kalman filtering (Wang and Bishop, 2003; Wei et al., 2006; Wu et al., 2015). Similar 

181 to the ensemble Kalman filter (EnKF), ETKF apply Kalman filtering to generate a 

182 sample analysis ensemble. However, the ETKF use the forecast error covariance 
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183 matrix only to estimate the analysis error covariance through a transformation matrix, 

184 not updating the mean state (Wang and Bishop, 2003; Zhou et al., 2019). The 

185 equation for the ETKF algorithm is as follows:

a f ,X X T (3)

186 where and is denoted as the analysis perturbation and forecast perturbation aX fX

187 matrix and is a transformation matrix. The detail computation process follows T

188 Hunt et al. (2005). Localization is not used here. A multiplicative covariance inflation 

189 factor (with a value of 1.3) is applied. The observation was produced by adding a 

190 random perturbation (following standard Gaussian distribution) to true state. 

191 Moreover, we use an ensemble size of 20, assimilated every 0.05 tus and the 

192 performing time is over 1 tus.

193 Studies have shown that the ETKF can be used for generate ensemble 

194 perturbations and have a better preformation on sampling the analysis uncertainties 

195 than most ensemble generation schemes (Wei et al., 2006; Feng et al., 2016). One of 

196 greatest qualities for ETKFs is that they are orthogonal in observation space (Wang 

197 and Bishop, 2003; Wei et al., 2006; Feng et al., 2016).

198

199 2.3 Experimental design

200 To make the performance of the evolution of the initial perturbations in a 

201 multiscale system as clear as possible, we undertook several ensemble forecasting 

202 experiments in the coupled Lorenz model, based on RP, BV, ETKF and NLLV 
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203 methods. The model is integrated by Fourth Order Runge-Kutta method with a time 

204 step of 0.005 tus in all experiments. The procedure for the ensemble forecasting 

205 experiments is shown in Fig. 4. The first 10000 steps involve a spin up of the coupled 

206 Lorenz model. After the spin up, we use a 200-step ensemble Kalman filter (EnKF) 

207 data assimilation scheme (Evensen 2003, 2004) to create the initial analysis state. The 

208 parameter set of EnKF assimilation procedure is same to the ETKF scheme. The 

209 assimilation cycle is 0.05 tus, which is perfect to project to 6 hours window in real 

210 world. Hence, 1 tus is assumed to be equal to 5 days in real world in this paper. At the 

211 same time of assimilation process, the BV and NLLV perturbations are calculated 

212 based on the assimilated data as a basic flow. Then the ensemble perturbations created 

213 by the RP, BV, ETKF and NLLV methods are added to the analysis state in pairs 

214 (both positive and negative perturbations are added). The Ensemble perturbation 

215 vectors are scaled to . The integration from the analysis state is the control 21 10

216 forecast. And the perturbed forecasts are ensemble members. Increasing the number 

217 of ensemble members, the prediction level of ensemble forecast which is drove by 

218 BVs, NLLVs and ETKFs showed an improvement (not shown). Thus, the ensemble 

219 size is 6 pairs in this paper (with positive and negative perturbations superimposed in 

220 pairs). We run 10000 samples of the ensemble forecast (repeating the 

221 assimilation/breeding processes and forecasting processes). The initial value of each 

222 sample has one step interval. The initial states of 10000 samples include a 

223 representative range of coupled model states.
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224 2.4 Verification method

225 To evaluate the reliability of the ensemble predictions, a classical Brier score is 

226 applied to assess the relative skill of the BV compared with that of NLLV and ETKF. 

227 For any event , the Brier score (Brier 1950) is computed as:

2

1

1  ( ) ,
N

i i
i

BS f o
N 

  (4)

228 where is the number of samples,  denotes the probability of the i-th sample for N if

229 event  prediction, and  denotes the probability of the i-th sample actually occurring  io

230 for event  (which can take on values of only 0 or 1).   

231 3. Results

232 Before evaluating the quality of the ensemble predictions, the errors from the 

233 control forecast are going to be investigated. We assume that the model is perfect, and 

234 the true state is a long run of the model for each sample. As shown in Fig. 5, there 

235 exists a large difference between the control forecast and the true value. The evolution 

236 of the control and true value show rapid fluctuating changes over the whole system 

237 (Fig. 5a). When separating the coupled Lorenz system into a fast subsystem and a 

238 slow subsystem, similar characteristics are found in the fast subsystem compared to 

239 the whole system (Fig. 5b). However, these two time series in the slow subsystem 

240 show slow fluctuating changes, and they show a significant distinction until 4 tus 

241 (Fig. 5c). Given that there exists a relatively large difference between the control 

242 forecast and the true state, we use the Lyapunov exponential form error growth rate to 
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243 measure the variation of forecast error for a control run. It is found that the initial 

244 error for analysis shows positive growth over time. The forecast error for a control run 

245 mainly comes from the fast subsystem. The variation in forecast error for the control 

246 run is different in the slow and fast subsystem, error growing much faster in fast 

247 subsystem than in slow subsystem (Fig. 5d). The equation for the Lyapunov 

248 exponential form error growth rate is as follows:

0 0

( )1 ln ,
( )

x t
t t x t

 


V
V

(4)

249 where is the initial time,  denotes the error size in the  norm at time .0t ( )x tV 2L t

250 Studies have proved that the ensemble forecast improves the quality of the 

251 control forecast (Ndione et al. 2020; Toth and Kalnay 1997). Running an ensemble of 

252 forecasts from adding perturbations to initial conditions, the ensemble mean can 

253 improve the prediction by filtering out unpredictable components, and the spread 

254 among the forecasts can provide a probability prediction (Toth and Kalnay 1993). In 

255 order to explore appropriate ensemble initial perturbations configuration in a 

256 multiscale system, many ensemble forecast experiments are conducted in this part, 

257 with multiple perturbation methods (RP, BV, ETKF and NLLV). The root-mean-

258 square error (RMSE) for the ensemble mean and the ensemble spread are used to 

259 measure the forecast skill from the experiments. For a “perfect ensemble”, the 

260 ensemble spread will be close to the RMSE of the ensemble mean for all forecast 

261 times (Buckingham et al. 2010; Magnusson et al. 2008; Palmer et al. 2006). 
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262 Additionally, considering different error growth in the fast subsystem and slow 

263 subsystem, we shall discuss them separately. In Fig. 6, the mean RMSE (solid lines) 

264 and ensemble spread (dashed lines) are plotted for the control (black), RP (red), BV 

265 (blue), ETKF (purple) and NLLV (green) after adding perturbations to all variables. 

266 The RMSE is oscillating at short lead time. It is possible that the RMSE oscillation at 

267 short lead- time relate our temporal scale, which is similar to diurnal cycling. In the 

268 first 0.5 tus, the RMSE for the NLLV, ETKF, BV, and RP ensembles are similar to 

269 that of the control run. This is mainly because positive and negative perturbations 

270 superimposed on the control run cancel each other out at the initial time (errors grow 

271 linearly at the initial time (Ding and Li 2007)). Soon after, regardless of the 

272 perturbation method, the ensemble forecast can effectively reduce forecast errors from 

273 the control run in general. In the RMSE for the ensemble mean, the results from 

274 NLLVs are the lowest, followed by ETKFs, BVs, RPs, and the control forecast. 

275 Among them, NLLVs and ETKFs have nearly the same forecast ability. These two 

276 methods have obviously better predictive skill than BVs in the two main periods: 0.5–

277 2 tus and 4.5–8 tus (smaller RMSE for ensemble mean and bigger ensemble spread) 

278 (Fig. 6a). During the period 0.5–2 tus, the better predictive skill of NLLVs and 

279 ETKFs over the whole system is reflected mainly in the reduction in forecast errors in 

280 fast subsystem (Fig. 6b). And it is reflected in the reduction in forecast errors in slow 

281 subsystem during the period 4.5–8 tus (Fig. 6c). 

282 Now we wonder whether to add perturbations to different variables of this 
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283 system can achieve improvements from BVs to ETKF and NLLVs. Good ensemble 

284 perturbations should reflect the initial uncertainty of analysis (Toth and Kalnay 1993). 

285 Different perturbation methods have different ability in capturing the initial 

286 uncertainties. Owing to different error growth for initial perturbations in fast and slow 

287 subsystem (Fig. 5d), the prediction skill for different perturbation methods may differ 

288 when adding different timescale perturbations. Here, three error-addition schemes are 

289 used in this study: adding perturbations to both fast and slow variables, adding 

290 perturbations only to fast variables, and adding perturbations only to slow variables. It 

291 is shown that whether adding perturbations to fast variables or to slow variables 

292 contributes to an improvement in the forecasting skill for fast variables due to the 

293 feedback process between the coupled components (Fig. 7). When adding 

294 perturbations only to fast variables, the ensemble skills of all perturbation methods are 

295 improved in the prediction of fast variables after 0.4 tus (Fig. 7b). However, when 

296 adding perturbations only to slow variables, only NLLVs and ETKFs can improve the 

297 prediction skill of fast variables during the period 0.4–0.8 tus (Fig. 7c). In other 

298 words, only better independent perturbations superimposed on the slow subsystem 

299 can improve the forecasting skill of the fast subsystem. 

300 The ensemble forecast of slow variables behaves differently with fast variables. 

301 The advantages of the ensemble forecast over the control forecast become apparent up 

302 to 4 tus (Fig. 8). When adding perturbations only to fast variables, the forecasting 

303 skills of BVs, ETKFs and NLLVs are equivalent (Fig. 8b). However, when adding 
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304 perturbations only to slow variables, large differences are shown between the BVs 

305 with NLLVs and ETKFs, indicating that more independent perturbations have better 

306 prediction skill for the slow subsystem (Fig. 8c). Because of the feedback process 

307 between the coupled components, perturbations to both fast variables and slow 

308 variables contribute to an improvement in the forecasting skill for slow variables.

309 In general, the ensemble forecast shows a different performance in different 

310 time-scale systems. After a while the ensemble forecast starts to show better 

311 prediction skill than the control run. The advantages of the ensemble forecast become 

312 apparent after a very short period of time in a fast subsystem, but after a relatively 

313 long period of time in the slow subsystem. The reason for this difference is associated 

314 with the different error growths of different time-scale systems. In fast dynamics, 

315 errors from the analysis state grow quickly, whereas they will grow relatively slowly 

316 in slow dynamics. Besides, adding perturbations to both fast variables and slow 

317 variables contributes to an improvement in the forecasting skill for fast variables and 

318 slow variables, indicating that uncertainty in both fast and slow variables plays a role 

319 in the prediction of fast variables and slow variables. When adding perturbations to 

320 slow variables, it seems that independent perturbations (NLLVs and ETKFs) perform 

321 much better than the other types (BVs or RPs) in the prediction of both fast variables 

322 and slow variables. This is probably mainly because highly independent perturbations 

323 can better capture initial uncertainty information. Additionally, NLLVs seems to win 

324 ETKFs by a narrow margin (Fig. 6-8). To further confirm this, we conduct an 

in 
pre

ss



18

325 independent samples t-test with RMSE of 10000 samples for the ETKF method and 

326 NLLV method. The RMSE data is from the experiments same as in Fig. 6a. The mean 

327 RMSE from NLLV is less than that from ETKF (with a difference of -0.1429), 

328 exceeding the 90% confidence level (with a probability value of 0.0812; not shown). 

329 Therefore, of the two independent perturbations, NLLV is better than ETKFs.

330 Other evidence also shows that the independent perturbations (NLLVs) show 

331 better forecasting quality than BVs. Figure 9 provides the distribution of RMSE and 

332 ensemble spread from 10000 samples for NLLV and BV predictions. At the 

333 beginning of the ensemble forecast, the forecast errors for both NLLVs and BVs are 

334 concentrated mainly around the diagonal, indicating that the forecasting skill of 

335 NLLVs is roughly equal to that of BVs (Fig. 9a). The number of samples with a 

336 prediction error by NLLVs less than that by BVs increase over time, reaching 58% of 

337 total samples at 6 tus (Fig. 9b). The number of samples with an ensemble spread by 

338 NLLVs is greater than that by BVs at any time (Fig. 9d–f). It is concluded that 

339 compared to BVs, NLLVs tend to have smaller RMSE for the ensemble mean and 

340 bigger ensemble spread, indicating a better ensemble prediction performance.

341 The Brier score (BS) is commonly used in evaluating the quality of probabilistic 

342 forecasts generated by ensembles (Stephenson et al. 2008). We choose the event  1

343 (for  is the climatological mean to the distance of one standard deviation) (Fig. ( )
3

fX

344 10a) and event  (for  is the climatological mean to the distance of one standard 2
( )
3

sX

345 deviation) (Fig. 10b) to calculate the basic BS from the average of 10000 samples. 
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346 The smaller the value of BS, the better the forecasting skill of the ensemble forecast. 

347 As shown in Fig. 10, the NLLVs are more skillful than the BVs or RPs and their 

348 performance are similar to ETKFs.

349 The other verification method used was the Talagrand diagram (also called a 

350 rank histograms), which can characterize the reliability of an ensemble forecast 

351 (Candille and Talagrand 2010; Talagrand et al. 1997). For a reliable ensemble 

352 forecasting system, the observation must fall with equal probability into any of the 

353  intervals divided by the  ensemble forecast values (Talagrand et al. 1997). 1N  N

354 Considering an ensemble forecasting system with  members, the predicted value of N

355  can be defined as , where  denote the i-th sample, and  denotes the j-th ( )
3
sX ,i jP i j

356 ensemble member. For each sample, we count the number of members whose 

357 predicted values are smaller than the true values, represented as , which can take on n

358 values of only . Then, we count the number of samples (for all samples of , 0 N S

359 we run 10000 samples of the ensemble forecast) under each , defined by . The n
nS

360 ideal frequency of  is , for which we expect the true value to have equal nS / ( 1)S N 

361 probability in the  intervals. We calculate the relative frequency 1N 

362 . The distribution of  is plotted in Fig. 11. It shows that both the n

/ ( 1)n
SP

S N


 nP

363 NLLV, ETKF and BV ensembles are under-dispersive. But the results for NLLVs 

364 show a flatter histogram, indicating the greater reliability of the NLLV ensemble 

365 system. The stability of the NLLV and the ETKF ensemble system is comparable. 

366 The results from BS and the Talagrand diagram are based on the ensemble experiment 
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367 which adds perturbations to both fast and slow variables and we choose  and ( )
3

fX

368  to analyze. Similar results can be obtained from other error-addition schemes and ( )
3

sX

369 variables (not shown). These results prove the better performance of NLLVs and 

370 ETKFs than BVs in the ensemble prediction.

371 4. Summary and discussion

372 It is still a huge challenge for ensemble prediction in multiscale systems 

373 (Vannitsem and Duan 2020). One important issue is how to generate appropriate 

374 perturbations for different time-scale variables. This issue has been addressed here by 

375 considering different time-scale initial perturbations in the prediction of different 

376 time-scale variables. Besides, the selection of ensemble generation schemes is very 

377 important. The NLLV method has been proved to have many advantages in ensemble 

378 forecasting (Feng et al. 2014; Feng et al. 2016; Hou et al. 2018). Therefore, we have 

379 explored how to add appropriate ensemble initial perturbations to a multiscale system, 

380 based on multiple initial perturbation methods. The results are as below. 

381 Compared to the control forecast, the ensemble forecast can effectively reduce 

382 forecasting errors in the coupled model. Due to different error growth in different 

383 time-scale systems, the advantages of an ensemble forecast become apparent after a 

384 very short period of time in a fast subsystem, but after a relatively long period of time 

385 in a slow subsystem. After adding perturbations separately to a fast subsystem and a 

386 slow subsystem, we found that, as a result of coupled dynamic processes, whether 

387 adding perturbations to fast variables or to slow variables contributes to an 
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388 improvement in the forecasting skill for fast variables and slow variables. In terms of 

389 initial perturbation methods, it is evident that independent perturbations (NLLVs and 

390 ETKFs) are relatively superior to the other kinds (BVs or RPs). The two of them had 

391 nearly equivalent prediction skill, and NLLVs won by a narrow margin. The ensemble 

392 forecasting system based on NLLVs or ETKFs is of higher quality than that based on 

393 BVs. In particular, when adding perturbations to slow variables, the highly 

394 independent perturbations (NLLVs and ETKFs) can capture initial uncertainty 

395 information quickly, giving them better prediction skill in the coupled system.

396 We may deduce that in a coupled ocean–atmosphere model, for the prediction of 

397 fast-scale variables (e.g. atmospheric variables), the ensemble forecast works on 

398 reducing the errors from the control forecast after a short period of time. However, for 

399 slow-scale variables (e.g. oceanic variables), the ensemble forecast may be effective 

400 in improving the medium and long-term forecasts. Considering air–sea coupling, 

401 adding perturbations to oceanic variables will contribute to an improvement in the 

402 forecasting skill for atmospheric variables and adding perturbations to atmospheric 

403 variables can also improve the forecasting skill for oceanic variables. For the 

404 prediction of atmospheric and oceanic variables, when adding perturbations to 

405 oceanic variables, independent perturbations may perform better in the ensemble 

406 forecast. These results may have important implications for the development of 

407 ensemble forecasts of the coupled model in the future. 

408 In general, NLLVs and ETKFs have a better performance than BVs and RPs in a 
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409 coupled model. The computations of ETKFs require much computing resources. 

410 Fortunately, ETKF perturbations can be a byproduct from the data assimilation. 

411 Compared to ETKFs, NLLVs are completed independent (orthogonal) and easy to 

412 calculate.  Both NLLVs and ETKFs are expected to have a wide potential application 

413 in coupled models.

414 Nevertheless, since we obtained these results through a toy model, further 

415 research is however necessary to expand these results to realistic air–sea coupled 

416 models. Our research team have tried applying NLLVs in the Weather Research and 

417 Forecasting (WRF) model. It is expected that NLLVs will have a good performance in 

418 realistic air–sea coupled models. Besides, Vannitsem and Duan (2020) discovered that 

419 the fastest backward Lyapunov vectors are not the most suitable for initializing a 

420 multiscale ensemble forecasting system. So how to choose the appropriate NLLV 

421 modes in a multiscale ensemble forecasting system may be an important issue. Both 

422 will be addressed in the near future.
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587 Table 1. Physical parameters used in the coupled Lorenz model

Parameter Description Value

 Prandtl number 10

b Physical dimensions of the layer 8/3

c Relative time scale 10

sr Rayleigh number of the

slow dynamics

28

fr Rayleigh number of the

fast dynamics

45

s Coupling coefficient of the

slow dynamics

210

f Coupling coefficient of the

fast dynamics

10

588

589

590

591

592

593

594
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597

598 FIG. 1. Time evolution of variables for the coupled Lorenz model: (a) slow variables 

599 and (b) fast variables. 

600
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601

602 FIG. 2. Projections of the coupled Lorenz model on three two-dimensional planes: 

603 (a)–(c) for the slow variables, and (d)–(f) for the fast variables. 
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604

605 FIG. 3. Schematic diagram of the generation of NLLVs [adapted from Hou et al. 

606 (2018)]. The creation of NLLV1 is similar to the creation of BV. To acquire the 

607 NLLV2, a pair of RPs is initially added to the analysis state. The evolved 

608 perturbations (grey dashed line) are orthogonalized with the NLLV1 (blue dashed 

609 line) to produce the NLLV2 (green dashed line) using a Gram–Schmidt 

610 reorthonormalization (GSR) procedure. Similarly, NLLVn are orthogonalized with 

611 NLLV1, NLLV2, NLLV3, …, NLLVn-1. 
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613

614 FIG. 4. Illustration of the initialization and forecasting procedure. Numbers represent 

615 the integration steps, and 1 step = 0.005tus.
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617

618

619 FIG. 5. (a)–(c) Evolution of control forecasts (light blue) against true state (light red) 

620 as a function of lead time, for (a) the whole system, (b) the fast subsystem, and (c) the 

621 slow subsystem (in the  norm). (d) Mean growth rate in the form of Lyapunov 2L

622 exponent (value *100) of 10000 samples as a function of lead time from the coupled 

623 Lorenz model for the control run (the whole system (light purple), the fast subsystem 

624 (light orange), and the slow subsystem (light blue)).
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625

626 FIG. 6. Mean RMSE (solid lines) and ensemble spread (dashed lines) of 10000 

627 samples as a function of lead time for the control run (black), RP method (red), BV 

628 method (blue), ETKF method (purple), and NLLV method (green) after adding 

629 perturbations to all variables. (a) the whole system, (b) the fast subsystem, and (c) the 

630 slow subsystem.
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631

632 FIG. 7. Mean RMSE (solid lines) and ensemble spread (dashed lines) of 10000 

633 samples in the fast subsystem as a function of lead time for the control run (black), 

634 random perturbation method (red), BV method (blue), ETKF method (purple), and 

635 NLLV method (green) after adding perturbations to different variables: (a) adding 

636 perturbations to both fast variables and slow variables, (b) adding perturbations only 

637 to fast variables, and (c) adding perturbations only to slow variables. 
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638

639 FIG. 8. Mean RMSE (solid lines) and ensemble spread (dashed lines) of 10000 

640 samples in the slow subsystem as a function of lead time for the control run (black), 

641 random perturbation method (red), BV method (blue), ETKF method (purple), and 

642 NLLV method (green) after adding perturbations to different variables: (a) adding 

643 perturbations to both fast variables and slow variables, (b) adding perturbations only 

644 to fast variables, and (c) adding perturbations only to slow variables.
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646

647 FIG. 9. (a)–(c) RMSE of 10000 samples based on NLLV and BV methods at (a) 3 tus, 

648 (b) 6 tus, (c) 9 tus in the slow subsystem. The upper right-hand corner indicates the 

649 ratio of samples where RMSE for the NLLV method is smaller than the RMSE for the 

650 BV method in (a)–(c). (d)–(f) The same as (a)–(c), but for an ensemble spread of 

651 10000 samples. The upper right-hand corner indicates the ratio of samples where the 

652 ensemble spread for the NLLV method is larger than it is for the BV method in (d)–

653 (f). (a)–(f) are based on the experiments which add perturbations to both fast and slow 

654 variables.
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657

658 FIG. 10. (a) Basic Brier score (BS) for the event  ( : where  is the 1 1
( )
3

fX

659 climatological mean to the distance of one standard deviation) of ensemble forecasts 

660 based on NLLVs (green line), ETKFs (purple line), BVs (blue line) and RPs (red line) 

661 as a function of lead time. (b) The same as (a), but for event  ( : where  is 2 2
( )
3

sX

662 the climatological mean to the distance of one standard deviation)

663
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669

670 FIG. 11. The histogram of the Talagrand distribution for different member intervals. 

671 The horizontal dashed lines denote the expected probability. Ensemble forecasts 

672 based on (a) BVs, (b) NLLVs and ETKFs at 2 tus. (a)–(c) are based on the experiment 

673 which add perturbations to both fast and slow variables and predicts the variable 

674 . (d)-(f) The same as (a)-(c), but at 6 tus and predicted variable is .( )
3

fX ( )
3

sX
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