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Introduction

The supporting contents provide additional information to (1) describe the details in constructing the EnKF data assim-
ilation system for the model; (2) explain the reasons for choosing the ECHAM4.5 simulated wind stress products; and (3)
illustrate the model’s spin-up and data assimilation cycle.

Text S1. The EnKF data assimilation system

The EnKF data assimilation system for initializing the ICM was first developed by Zheng et al. (2006, 2007). In the
system, the EnKF is implemented by using an ensemble square-root filter algorithm with no perturbation of observations
(e.g., Evensen, 2004). This EnKF data assimilation scheme was further improved by using a balanced, multivariate model-
error approach (Zheng and Zhu, 2008) and was upgraded to use mean preserving transformations in the square-root scheme
(Sakov and Oke, 2008; Evensen, 2009). During the assimilation cycle, the state vector contains both atmosphere and ocean
states, and the innovation vector is defined as the departure between the observed and modeled ensemble mean wind stress
and SST anomalies. Since the background error covariance is constructed from the coupled state ensemble member and
contains error correlations between atmosphere and ocean states, all the coupled model variables are updated by multiplying
the Kalman gain matrix by the innovation vector. The wind stress and SST anomaly data can then be consistently assimilated
into the coupled model to provide a dynamically consistent and accurate initial condition for real-time SST prediction (Zheng
and Zhu, 2010, 2015).

Text S2. The choice of ECHAM4.5 simulated wind stress products

Since the ECHAM4.5 simulated wind stress products (1963–96) were used to construct the statistical atmosphere model
(Zhang et al., 2005), it is more favorable to use the ECHAM4.5 simulation output as the observations to initialize the model
to produce dynamically consistent initial conditions. Also, the use of the ensemble mean data for assimilation enables us
to enhance the SST-forced signals by reducing the atmospheric noise (Zhang et al., 2005). The ensemble spread of the 24
ensemble members was calculated as the standard deviation of (wind stress) observation error to be used in the ensemble
Kalman filter (EnKF; Zheng and Zhu, 2010).

Text S3. The model’s spin-up and data assimilation cycle

For the hindcast experiments, the model’s spin-up and data assimilation cycle were carried out by the following steps:
(1) Starting from January 1880, the model restores the SST anomaly data through a nudging approach for 30 years to get a
reasonable model starting state; (2) From January 1900 to December 1949, the SST anomaly data are assimilated into the
ICM through the EnKF to generate the ensemble initial condition for the subsequent initialization and prediction; and (3)
Starting from January 1950, available wind stress and SST observations from 1950 to 2012 are assimilated into the EPS once
per month through the coupled data assimilation scheme (Zheng and Zhu, 2010) to update all model variables and to generate
the initial condition for ENSO prediction. The same SST dataset was also used to validate the model predictions.
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