Characterization of Organic Aerosol at a Rural Site in the North China Plain Region: Sources, Volatility and Organonitrates

Qiao ZHU^{1,2}, Li-Ming CAO¹, Meng-Xue TANG¹, Xiao-Feng HUANG¹, Eri SAIKAWA^{2,3}, and Ling-Yan HE¹

 ¹Key Laboratory for Urban Habitat Environmental Science and Technology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
 ²Department of Environmental Sciences, Emory University, Atlanta, GA 30322, USA
 ³Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA

ESM to: Zhu, Q., L.-M. Cao, M.-X. Tang, X.-F. Huang, E. Saikawa, and L.-Y. He, 2021: Characterization of organic aerosol at a rural site in the North China Plain region: Sources, volatility and organonitrates. *Adv. Atmos. Sci.*, https://doi.org/10.1007/s00376-020-0127-2. (in press)

Text S1. Source apportionment for BC

We can identify BC emitted from traffic emissions (BC_tr) and biomass burning (BC_bb) using the following equations in Sandradewi et al. (2008):

$$\frac{b_{\rm abs}(470)_{\rm tr}}{b_{\rm abs}(950)_{\rm tr}} = \left(\frac{470}{950}\right)^{-\alpha \rm tr},\tag{1}$$

$$\frac{b_{\rm abs}(470)_{\rm bb}}{b_{\rm abs}(950)_{\rm bb}} = \left(\frac{470}{950}\right)^{-\alpha \rm bb},\tag{2}$$

$$b_{abs}(\lambda) = b_{abs}(\lambda)_{tr} + b_{abs}(\lambda)_{bb} , \qquad (3)$$

$$BC_{tr} = BC_{total} \frac{b_{abs,tr,950 \text{ nm}}}{b_{abs,total,950 \text{ nm}}},$$
(4)

$$BC_{bb} = BC_{total} - BC_{tr} , \qquad (5)$$

where b_{abs} (470 nm) and b_{abs} (950 nm) represent the aerosol absorption coefficients at 470 nm and 950 nm, respectively, α is the absorption exponent, and λ is the wavelength. The values used for traffic and biomass burning are 0.9 and 1.7, respectively, according to Elser et al. (2016).

^{*}The online version of this article can be found at https://doi.org/10.1007/s00376-020-0127-2.

Fig. S1. Mass spectrum profiles of 5 factors (a) and 6 factors (b) based on PMF analysis, and diagnostic plots of the chosen (4 factors) PMF solution (c): (1) Q/Qexp vs number of factors; (2) the time series of the measured and the reconstructed organic mass; (3) Q/Qexp vs. FPEAK for the solution with optimal number of factors; (4) mass fraction of PMF factors vs. FPEAK; (5) correlations of time series and mass spectra among PMF factors; (6) the distribution of scaled residuals for each m/z.

Fig. S2. Mass spectrum profiles of OA factors resolved by the PMF analysis on high-resolution merged organic and NO_x^+ fragments.

Fig. S3. Correlation coefficients (*R*) between each OA factor resolved from PMF analysis on merged organics and nitrates mass spectrum (i.e., $PMF_{org+NO3}$) and corresponding OA factor from PMF analysis on organics mass spectrum (i.e., PMF_{org}) on time series.

Fig. S4. Correlation coefficients (R) between factors resolved from PMF analysis on organics mass spectrum and different tracers.

Table 1. Estimated results of $NO_{3,org}$ at different temperatures using the NO_x^+ ratio and the PMF method and the comparison coefficients between the two methods.

Temperature	NO_x^+ ratio method (µg m ⁻³)	PMF method ($\mu g m^{-3}$)	R
50°C	0.31±0.057	0.29±0.041	0.71
100°C	0.22 ± 0.077	0.20±0.031	0.75
150°C	0.14 ± 0.055	0.13±0.038	0.72
200°C	0.14 ± 0.047	0.13±0.039	0.68

REFERENCES

- Elser, M., and Coauthors, 2016: New insights into PM_{2.5} chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry. *Atmospheric Chemistry and Physics*, **16**, 3207–3225, https://doi.org/10.5194/acp-16-3207-2016.
- Sandradewi, J., A. S. H. Prévôt, S. Szidat, N. Perron, M. R. Alfarra, V. A. Lanz, E. Weingartner, and U. Baltensperger, 2008: Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. *Environ. Sci. Technol.*, 42, 3316–3323, https://doi.org/10.1021/es702253m.