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Introduction:

This file provides supplementary material on the brief descriptions of the IAP EPS and the pan-Arctic prediction sys-
tems and components discussed in the main article. The additional figures comparing the best and worst Arctic sea-ice predic-
tion members are also contained in the supplementary file. 

Text S1. Description of the IAP ENSO EPS

The IAP ENSO EPS with 100 ensemble forecast members has three main components: an intermediate coupled model
(ICM), an air–sea coupled data assimilation system, and a stochastic model-error model.  (1) The ICM was developed by
Keenlyside and Kleeman (2002) and Zhang et al. (2005) and consists of a dynamical ocean model, an SST anomaly model
that empirically parameterizes the temperature of subsurface water entrained into the mixed layer (Te)  based on sea level
anomalies, and a statistical wind stress (τ) model. The dynamical component of the ICM consists of linear and nonlinear com-
ponents. The former is basically the McCreary (1981) modal model but is extended to include horizontally-varying back-
ground  stratification,  ten  baroclinic  modes,  and  a  parameterization  of  the  local  Ekman-driven  upwelling.  A  correction,
derived  from  the  residual  nonlinear  momentum  equations,  is  used  to  improve  the  solution  where  the  linear  assumptions
break down. All  coupled model  components exchange simulated anomaly fields,  such as the wind stress (τ)  in the atmo-
sphere and the SST in the ocean, once a day.

(2) The air–sea coupled data assimilation system (Zheng and Zhu, 2010, 2015) uses an ensemble Kalman filter (EnKF)
approach  to  minimize  the  errors  in  both  the  atmospheric  and  oceanic  initial  conditions  by  assimilating  available  atmo-
sphere and ocean observations simultaneously into the ICM. In the system, the EnKF is implemented by using an ensemble
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square-root filter algorithm with no perturbation of observations (e.g., Evensen, 2004). This EnKF data assimilation scheme
was further improved by using a balanced, multivariate model-error approach (Zheng and Zhu, 2008) and was upgraded to
use mean preserving transformations in the square-root scheme (Sakov and Oke, 2008; Evensen, 2009). During the assimila-
tion cycle, the state vector contains both atmosphere and ocean states, and the innovation vector is defined as the departure
between the observed and modeled ensemble mean wind stress and SST anomalies. Since the background error covariance
is constructed from the couple state ensemble member and contains error correlations between atmosphere and ocean states,
all the coupled model variables are updated by multiplying the Kalman gain matrix by innovation vector. The atmospheric
and oceanic observations can then be consistently assimilated into the coupled model to provide a dynamically consistent
and accurate initial condition for real-time SST prediction.

(3) A stochastic error model (Zheng et al., 2009; Zheng and Zhu, 2016) was embedded within the ICM to perturb the
modeled SST anomaly field randomly by adding error terms to the right-hand-sides of the model equations with 100 mem-

 

 

Fig. S1. Difference in surface air temperature (°C) between the best and worse members.

 

 

Fig. S2. As in Fig. S1, but for the surface downward shortwave radiation (W m−2). 

  



bers. This stochastic error model is designed to account for the time evolutions of the forecasted uncertainties in the SST
anomaly field. The performance of this prediction system has been documented in Zheng and Zhu (2016), where a 20-year
retrospective forecast comparison shows that good forecast skill of the EPS with a prediction lead time of up to one year is
possible (Zheng and Yu, 2017). 

Text S2. Description of the Arctic sea ice prediction model

The Arctic sea ice predictions are performed by a regional coupled prediction system with eight ensemble members,
and the prediction system is built on the Weather Research and Forecasting model (WRF), the Regional Ocean Modeling Sys-
tem (ROMS), the Community Ice CodE (CICE), and the data assimilation based on the Local Error Subspace Transform Kal-
man Filter  (LESTKF).  The WRF and ROMS models are initialized with the Climate Forecast  System version 2 (CFSv2,
Saha  et  al.,  2014)  operational  forecast  archived  at  the  National  Centers  for  Environmental  Prediction  (NCEP;
http://nomads.ncep.noaa.gov/pub/data/nccf/com/cfs/prod/). To reduce ice thickness biases inherited from the CFSv2 simula-
tions/forecasts  (Saha  et  al.,  2014),  satellite-observed  sea  ice  concentration  and  thickness  products  are  assimilated.  The
details of configurations of physical parameterizations, model domain, and the assimilation procedures of the coupled predic-
tion system are described in Yang et al. (2020).
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