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1.    Introduction

Figures S1 to S12 are provided in this file, as a supplement to detect the effects of surface air temperature (AT), snow
depth (SD), and the soil memory on the soil temperature (ST). To demonstrate the advantage of the time-lagged convergent
cross mapping (CCM) under the strong coupling conditions and the presence of noise, we present two numerical models in
Figs.  S1−S3.  From the linear  correlation aspect,  the  time-delayed relationships  between the AT and ST,  and their  differ-
ences for different layers, are shown in Fig. S4. The optimal embedding dimension (E) and the nonlinearity of the AT and
ST time series are calculated by the simplex projection and S-map methods, respectively, in Figs. S5 and S6. Results of the
pairwise  asymmetric  inference  (PAI)  to  confirm  the  AT effects  identified  by  the  CCM are  shown  in Fig.  S7. Figure  S8
shows that the linear trends of the AT and STs in each season from 1998 to 2013 and the AT are always consistent with the
trends of the STs. For the wintertime trends, however, the AT is cooling while the STs are warming, in northeastern China.
In this region, the wintertime SD and its increasing trends are shown in Fig. S9. This may be the reason why the trends of
the STs diverged from the trends of the AT in winter during the recent global warming hiatus period. Since the winter AT
effects are blocked, the effects of SD and the soil memory on winter STs become more important in northeastern China. In
Fig. S10, the optimal embedding dimension (E) and the nonlinearity of the SD time series are calculated by the simplex pro-
jection and S-map methods, respectively. In Fig. S11, a nonlinear causality analysis method, CCM, is used to identify the

 

 

Fig. S1. CCM analyses of the coupled logistic systems [Eq. (S1)] in the cases of moderate coupling strength (a) and
strong coupling strength (b).

 

*The online version of this article can be found at https://doi.org/10.1007/s00376-020-0074-y.

 

 

 

  

https://doi.org/10.1007/s00376-020-0074-y
https://doi.org/10.1007/s00376-020-0074-y


causal effects of the SD and the soil memory on the winter STs. Results of the PAI to confirm the SD effects identified by
the CCM are shown in Fig. S12.

2.    Data information

The  data  used  in  these  figures  were  obtained  from the  China  Meteorological  Administration,  including  the  monthly
mean surface AT records (recorded at a height of 1.5 m), the monthly mean ST records at the nine layers of 0 cm, 5 cm, 10
cm, 15 cm, 20 cm, 40 cm, 80 cm, 160 cm and 320 cm (ST0, ST5, ST10, ST15, ST20, ST40, ST80, ST160 and ST320, respect-
ively), and the SD. All the data cover the period 1960−2013. For each element, only those stations with no more than 5.5%
missing data during 1960−2013 were selected, and the gaps caused by the missing data in the time series were filled using a
simple linear interpolation algorithm. The data records of ST0 are inhomogeneous owing to the change in observational infra-
structure in the year 2005.

3.    Advantages of the time-lagged CCM method

To demonstrate the advantage of the time-lagged CCM method under strong coupling conditions and the presence of
noise, we present two numerical models as follows:

3.1.    Testing the strong coupling effect
  {x(t+1) = x(t)[3.8−3.8x(t)]

y(t+1) = y(t)[3.1−3.1y(t)−Cx(t)] . (S1)

Equation (S1) shows the coupled logistic systems, and the parameter C controls the coupling strength between x and y.

 

 

Fig.  S2.  Time-lagged  CCM analyses  of  the  coupled  logistic  systems  [Eq.  (S1)]  in  the  cases  of  moderate  coupling
strength (a) and strong coupling strength (b).

 

 

Fig. S3. (a) CCM and (b) time-lagged CCM analyses of the stochastic processes [Eq. (S2)].

 

  



 

 

Fig.  S4.  Time-delayed  correlation  coefficients  between  the
AT and the STs (ST40, ST80, ST160 and ST320, from the top
panel  to  bottom panel)  averaged over  all  stations.  Above the
red  line  indicates  the  correlation  coefficients  are  statistically
significant at the 95% confidence level. The black dashed line
indicates where correlation coefficients are equal to 0. In each
panel,  the value on the horizontal  axis,  where the correlation
coefficient  is  maximum,  represents  the  time  taken  to
propagate  the  signals.  Negative  (positive)  values  on  the
horizontal  axis  indicate  the  variations  in  the  AT  are  ahead
(behind) those of the ST. From the top panel to bottom panel,
the aforementioned horizontal axis values are 0, 0, −1 and −3.
This implies that the AT has impacts on the STs, and it takes
0 months, 0 months, 1 month and 3 months for the effects of
AT to reach the soil at the 40 cm, 80 cm, 160 cm and 320 cm
layers,  respectively.  The  effects  of  the  ST on  the  AT cannot
be exhibited by this method. 

  



When C = 0.1, the coupled systems have a moderate coupling strength. When C is set to 0.8, it is acting as a strong coup-
ling.

According to Sugihara et al. (2012) and Ye et al. (2015), when C = 0.1, both the CCM and time-lagged CCM methods
can accurately infer the causal direction between x and y. However, when C = 0.8, Sugihara et al. (2012) found that CCM can-
not infer the correct causal direction, and this is because the strong coupling induces a general synchrony effect for x and y.
Hence, Ye et al.  (2015) demonstrated that time-lagged CCM can accurately infer the causal direction, in the case of syn-
chrony induced by strong coupling.

In the following, we briefly report the results from experiments to test the strong coupling impact on the performances
of CCM and time-lagged CCM, by analyzing the system shown by Eq. (S1).

3.1.1.    Inferring causality through CCM

Figure S1a shows that when the coupling strength is moderate (C = 0.1), CCM can infer causal direction for x and y.
The cross-mapping skill  from y to x is  of  high magnitude,  and this  is  due to  the fact  that  the information content  of x is
shared with y. However, the cross-mapping skill from x to y is nearly zero, and this is due to the fact that the information con-
tent of y is not shared with x. This means that x causes y, but y does not cause x, which is consistent with the real dynamics
of Eq. (S1).

 

 

Fig. S5.  Left-hand column: Forecast skills calculated by simplex projection at different embedding dimensions (E)
for the monthly records of the AT, ST40, ST80, ST160 and ST320 at Lanzhou station. The best E is chosen when the
forecast  skill  is  optimal.  According to the best E,  the nonlinearities  of  the time series  were detected by the S-map
method (right-hand column).

 

  



 

 

Fig. S6.  (a),  (c),  (e),  (g) and (i):  Forecast skills calculated by simplex projection at different embedding
dimensions  (E)  for  the  AT,  ST40,  ST80,  ST160  and  ST320  in  spring  (MAM),  summer  (JJA),  autumn
(SON) and winter (DJF). The best E is chosen when the forecast skill is optimal. According to the best E,
the nonlinearities of the time series were detected by the S-map method ((b), (d), (f), (h) and (j)). 

  



Then, Fig. S1b shows that when the coupling strength is strong (C = 0.8), CCM cannot correctly infer causal direction
for x and y. For the cross-mapping skill both from y to x and from x to y, they are not zero. This means that x and y share com-
mon information content. x causes y, and y also causes x. This is not consistent with the real dynamics of Eq. (S1). This is
due to the fact that the strong coupling makes x and y become synchronized (Sugihara et al., 2012; Ye et al., 2015), and Ye
et al. (2015) suggested to look at the performance of time-lagged CCM.

3.1.2.    Inferring causality through time-lagged CCM

Figure S2a shows that when the coupling strength is moderate (C = 0.1), time-lagged CCM can infer causal direction
for x and y. When using x(t) to cross-map y(t + tp), the optimal cross-mapping skill occurs at a positive lag; when using y(t)
to cross-map x(t + tp), the optimal cross-mapping skill occurs at a negative lag. This reveals that the information content of
x at the past time is encoded in the state of y at the latter time; and this means that x causes y, but y does not cause x, which
is consistent with the real dynamics of Eq. (S1).

Then, Fig. S2b shows that when the coupling strength is strong (C = 0.8), time-lagged CCM can infer causal direction
for x and y. Similar to the case of Fig. S2a, when using x(t) to cross-map y(t + tp), the optimal cross-mapping skill occurs at
a positive lag; when using y(t) to cross-map x(t + tp), the optimal cross-mapping skill occurs at a negative lag. The conclu-
sion for this causal inference is still that x causes y, but y does not cause x, which is consistent with the real dynamics of Eq.
(S1). The performance of time-lagged CCM is better than that of CCM.

 

 

Fig. S7. Results of the PAI analysis to confirm the effects of the AT on ST40 (first row), ST80 (second row), ST160
(third  row)  and  ST320  (last  row)  in  spring  (first  column),  summer  (second  column),  autumn  (third  column)  and
winter (last column). The y-axis shows the “Δ = CAT(AT-ST) − CST(ST-AT)”, where CAT(AT-ST) is the correlation between
the  estimated  and  original  AT and CST(ST-AT) is  the  correlation  between the  estimated  and  original  ST.  When Δ is
always greater than 0 as the data length increases, it means that the effects of the AT on the STs are very significant
and the causality from the AT to the STs is robust. It can be seen that Δ for all soil depths (ST40, ST80, ST160 and
ST320) is always greater than 0 in autumn and winter, implying robust causality from the AT to the STs. In spring
and summer, the AT and the ST have stronger coupling, and the springtime Δ for the ST40 and summertime Δ for
the ST40 and ST80 are not always greater than 0. This may be because of the low temporal resolution of the seasonal
records,  which  eliminates  some  differences  between  the  AT  and  the  STs  from the  monthly  time  scale  and  makes
them more synchronous at the seasonal time scale.

 

  



3.2.    Testing the presence of noise
  {x(t+1) = 0.85x(t)+ε1(t)

y(t+1) = 0.8y(t)+0.2x(t)+ε2(t)
. (S2)

Equation (S2) shows two stochastic processes, and they are coupled through a unidirectional causal influence from x to
y. ε1(t) and ε2(t) denote the Gaussian-distributed white noise with zero mean and unit variance. This coupled system mim-
ics the dynamical processes with random noise. Previous studies (Ye et al., 2015; Mønster et al., 2017; Huang et al., 2020)
have suggested that CCM is highly sensitive to the presence of noise, but time-lagged CCM can perform better under the pres-
ence of noise. The associated technical discussion is presented in the papers of Ye et al. (2015) and Huang et al. (2020).

In the following, we briefly report the results of experiments to test the impact of noise on the performances of CCM
and time-lagged CCM, by analyzing the system shown by Eq. (S2).

 

 

Fig.  S8.  Linear  trends  of  the  AT  and  STs  (ST0,  ST5,  ST10,  ST15,  ST20,  ST40,  ST80,  ST160,  ST320)  in  spring
(MAM, first  column),  summer  (JJA,  second column),  autumn (SON, third  column)  and winter  (DJF,  last  column)
from 1998 to 2013. Despite these trends being region-dependent, the spatial distributions of the trends of the AT are
similar to those of the STs in spring, summer and autumn. This phenomenon indicates that the AT and the STs are
always  coupled  in  terms  of  their  long-term  trends.  However,  for  the  cooling  trends  of  the  wintertime  AT  over
northeastern China, they diverge from the warming trends of the STs (ST0, ST40, ST80, ST160 and ST320).  This
suggests that the AT effects on the STs are not dominant.

 

  



Figure S3a shows that the CCM cannot correctly infer causal direction for x and y of Eq. (S2). For both cross mapping
skills from y to x and from x to y, they are not zero. This means that x and y share the common information content. x causes
y, and y also causes x. This is not consistent with the real dynamics of Eq. (S2).

Figure S3b shows that time-lagged CCM can infer causal direction for x and y of Eq. (S2). When using x(t) to cross-
map y(t + tp), the optimal cross-mapping skill occurs at a positive lag; when using y(t) to cross-map x(t + tp), the optimal
cross mapping skill occurs at a negative lag. This reveals that the information content of x at the past time is encoded in the
state of y at the latter time; and this means that x causes y, but y does not cause x, which is consistent with the real dynam-
ics of Eq. (S2).

4.    Simplex projection method and S-map test

Firstly, the optimal embedding dimension (E) should be determined. The simplex projection method was used to pro-
duce forecasts and examine the prediction skill, computed as the correlation between observed and predicted values. When
implementing the prediction, an exploratory series of E was used to evaluate the prediction. When the prediction skill was
optimal, the corresponding E was chosen. Secondly, based on the best E, the S-map test was used to test the nonlinearity in
the time series. In the S-map test, the local linear maps were fitted to the forecast from the reconstructed state space, and the
nonlinear parameter θ determined the distance weight of the vectors when fitting the local linear map. If θ was equal to 0,

 

 

Fig.  S9.  In  our  paper,  the  divergence  between  the  AT  trends  and  the  STs  trends  only  occurred  in  winter  in
northeastern China.  This is  intriguing,  and the insulation effect  of the thicker snow may explain this  phenomenon.
The two panels in the top row show the climatological SD in winter (DJF) and spring (MAM). The wintertime SD in
most  of  China  (except  northeastern  China  and  northern  Xinjiang)  is  less  than  2.5  cm.  In  winter,  the  SD  in
northeastern  China  is  more  than  4  cm  and  is  the  thickest  over  China.  In  spring,  both  the  thickness  and  area  of
coverage  of  the  snow are  decreased.  The  SD is  only  0.5--1.5  cm at  most  stations  in  northeastern  China.  The  two
panels  in  the  bottom row show the  trends  of  the  SD in  winter  and  spring  from 1998 to  2013.  The  wintertime SD
exhibits  remarkable  increasing  trends  in  northeastern  China.  The  springtime  SD is  too  thin  in  northeastern  China,
though it also has an increasing trend.

 

  



 

 

Fig. S10. As in Fig. S6 but for the winter SD in northeastern
China. Forecast skills are calculated by simplex projection at
different embedding dimensions (E) (top panel). The best E is
chosen  when  the  forecast  skill  is  optimal.  According  to  the
best E,  the  nonlinearity  of  the  time  series  was  calculated  by
the S-map method (bottom panel).

 

 

Fig. S11.  Nonlinear causality analysis (the mentioned CCM) was implemented to identify the effect of the SD and
the soil memory on the STs. The green (orange) line in the left-hand panel represents the cross-mapping skill of the
CCM between the SD and the winter ST40 (ST80), and the green (orange) line in the right-hand panel represents the
cross-mapping skill of the CCM between the SD and the winter ST160 (ST320). If the cross-mapping skills converge
with the increase in data length conducted in the CCM, and are not equal to 0, there is a causality between the two
variables.  In  the  left-hand  panel,  the  green  line  and  the  orange  line  approximately  converge  to  0.4  and  0.3,
respectively, indicating that the SD has impacts on ST40 and ST80 (more effect on ST40) in winter. For the deeper
soil,  the  SD  seems  to  have  no  impacts  on  ST160  and  ST320  in  winter,  with  their  cross-mapping  skills  almost
vanishing (green line and orange line in the right-hand panel). The blue lines and red lines in the two panels represent
the effect of the autumn ST on the winter ST. The cross-mapping skills between the autumn ST320 and the winter
ST320 converge (blue line in the right-hand panel), and are close to 0.8 when the data length exceeds 20. This means
that the autumn ST320 has a strong impact on the winter ST320. With the decrease in depth, the soil memory effects
are weakened. The effect  of the autumn ST160 on the winter ST160 is doubtful  because the red line (in the right-
hand panel) is not convergent.  The autumn ST40 (ST80) has no effect on the winter ST40 (ST80) because the red
line and blue line (in the left-hand panel) are always equal to 0. 

  



the weights were equal and the fitting model was a single linear model. However, for θ > 0, the weights relied on the local
information (i.e., distance) and the fitting model was nonlinear. If the optimal prediction skill occurred at θ = 0, the implica-
tion was that the time series could be predicted by a single linear model and exhibited linearity. Otherwise, the time series
exhibited nonlinearity when the optimal prediction skill occurred at θ > 0. For the AT, ST40, ST80, ST160 and ST320, their
time series exhibited nonlinearity in each season (except ST160 in autumn), and the wintertime SD in northeastern China
also reflected a nonlinear process (Figs. S5, S6 and S12). Therefore, the CCM method is suitable for detecting the causality
between these variables.
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Fig. S12. Results of the PAI analysis to confirm the effects of the SD on the ST40 (left-hand panel) and ST80 (right-
hand panel) in winter. The y-axis shows the “Δ = CSD(SD-ST) − CST(ST-SD)”, where CSD(SD-ST) is the correlation between
the  estimated  and  original  SD and CST(ST-SD) is  the  correlation  between  the  estimated  and  original  ST.  When  Δ is
always greater than 0 as the data length increases, it means that the effects of the SD on the STs are highly significant
and the causality from the SD to the STs is robust.
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