Electronic Supplementary Material to: Evaluation and Evolution of MAX-DOAS-observed Vertical NO₂ Profiles in Urban Beijing*

Yanyu KANG^{1,2}, Guiqian TANG^{2,3,8}, Qihua LI¹, Baoxian LIU^{4,5}, Jianfeng CAO⁶, Qihou HU⁷, and Yuesi WANG^{2,3,8}

¹Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China

²State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of

Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

³Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of

Sciences, Xiamen 361021, China

⁴School of Environment, Tsinghua University, Beijing 100084, China

⁵Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing Municipal Environmental Monitoring Center, Beijing 100048, China

⁶Tai'an Eco-environmental Monitoring Center of Shandong Province, Tai'an 271000, China

⁷Hefei Institute of Material Science, Chinese Academy of Sciences, Hefei 230031, China

⁸University of Chinese Academy of Sciences, Beijing 100049, China

ESM to: Kang, Y. Y., G. Q. Tang, Q. H. Li, B. X. Liu, J. F. Cao, Q. H. Hu, and Y. S. Wang, 2021: Evaluation and evolution of MAX-DOAS-observed vertical NO₂ profiles in urban Beijing. *Adv. Atmos. Sci.*, **38**(7), 1188–1196, https://doi.org/10.1007/s00376-021-0370-1.

Text S1 Detailed processing after observation

After the observations, we adopted the spectral analysis software QDOAS developed by the Belgian Institute of High-altitude Atmospheric Physics (BIRA-IASB) to perform wavelength calibration, spectral simulation of the MAX-DOASobserved spectrum with high-resolution solar spectra (SAO2010 solar spectra) (Chance and Kurucz, 2010), and inversion of the trace gas slant column concentration via DOAS data fitting with the QDOAS software by the least-square method (Stutz and Platt, 1996). Detailed information on the DOAS fitting approach is provided in Table S1.

Text S2 Specific settings for the retrieval

For this retrieval, we divided the 0–4 km tropospheric atmosphere into 40 layers with 100 m each. Both aerosol and trace gas profiles chose an exponential decreasing a priori with a scale height of 1 km. The a priori surface aerosol extinction was set to 0.2 km⁻¹, and the a priori surface concentration of NO₂ was set to 5 ppb. A priori uncertainties of aerosol and trace gas were all set to 100%, and the correlation height was set to 0.5 km. Moreover, fixed aerosol optical properties (asymmetry = 0.69, single scattering albedo = 0.9, and surface albedo = 0.05) were used during the retrieval (Xing et al., 2020).

^{*}The online version of this article can be found at https://doi.org/10.1007/s00376-021-0370-1.

Table S1.	DOAS spectrum	analysis settings	of O_4 and NO_2 .
-----------	---------------	-------------------	-----------------------

		Fitting interval	
		O ₄	NO ₂
	Data source	338–370 nm	338–370 nm
NO ₂	298 K, I_0^* correction (SCD of 10 ¹⁷ molecules cm ⁻²); Vandaele et al., 1998	\checkmark	\checkmark
NO ₂	220 K, I_0 correction (SCD of 10^{17} molecules cm ⁻²), pre-orthogonalized; Vandaele et al., 1998	\checkmark	\checkmark
O_3	223 K, I_0 correction (SCD of 10^{20} molecules cm ⁻²), Serdyuchenko et al., 2014	\checkmark	\checkmark
O ₃	243 K, <i>I</i> ₀ correction (SCD of 10 ²⁰ molecules cm ⁻²), pre-orthogonalized; Serdyuchenko et al., 2014	\checkmark	\checkmark
O_4	293 K; Thalman and Volkamer, 2013	\checkmark	\checkmark
HCHO	297 K; Meller and Moortgat, 2000	\checkmark	\checkmark
BrO	223 K; Fleischmann et al., 2004	\checkmark	\checkmark
H_2O	296 K, HITEMP; Rothman et al., 2010	×	×
Ring	Calculated with QDOAS according to Chance and Spurr, 1997	\checkmark	\checkmark
Polynomial degree	- · · · ·	Order 3	Order 3
Intensity offset		Constant	Constant

*Solar I₀ correction; Aliwell et al., 2002.

Fig. S1. Correlation analysis of the MAX-DOAS and tower-based in situ VMR results in the case where the cloud is not removed.

Fig. S2. Correlation analysis of the MAX-DOAS and tower-based in situ VMR results in the cases of high AOD and low AOD.

Fig. S3. Diurnal variation of boundary layer height (BLH) from 1 April to 31 May 2019.

REFERENCES

- Aliwell, S. R., and Coauthors, 2002: Analysis for BrO in zenith-sky spectra: An intercomparison exercise for analysis improvement. J. *Geophys. Res.*, **107**, 4199, https://doi.org/10.1029/2001JD000329.
- Chance, K., and R. L. Kurucz, 2010: An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared. *Journal of Quantitative Spectroscopy and Radiative Transfer*, **111**(9), 1289–1295, https://doi.org/10.1016/j.jqsrt.2010.01.036.
- Chance, K. V., and R. J. D. Spurr, 1997: Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. *Appl. Opt.*, **36**, 5224–5230, https://doi.org/10.1364/AO.36.005224.
- Fleischmann, O. C., M. Hartmann, J. P. Burrows, and J. Orphal, 2004: New ultraviolet absorption cross-sections of BrO at atmospheric temperatures measured by time-windowing Fourier transform spectroscopy. *Journal of Photochemistry and Photobiology A: Chemistry*, 168, 117–132, https://doi.org/10.1016/j.jphotochem.2004.03.026.

- Meller, R., and G. K. Moortgat, 2000: Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225–375 nm. *J. Geophys. Res.*, **105**, 7089–7101, https://doi.org/10.1029/1999JD901074.
- Rothman, L. S., and Coauthors, 2010: HITEMP, the high-temperature molecular spectroscopic database. *Journal of Quantitative Spectroscopy and Radiative Transfer*, **111**, 2139–2150, https://doi.org/10.1016/j.jqsrt.2010.05.001.
- Serdyuchenko, A., V. Gorshelev, M. Weber, W. Chehade, and Burrows, J. P., 2014: High spectral resolution ozone absorption cross-sections—Part 2: Temperature dependence. *Atmospheric Measurement Techniques*, 7, 625–636, https://doi.org/10.5194/amt-7-625-2014.
- Stutz, J., and U. Platt, 1996: Numerical analysis and estimation of the statistical error of differential optical absorption spectroscopy measurements with least-squares methods. *Appl. Opt.*, **35**(30), 6041–6053, https://doi.org/10.1364/AO.35.006041.
- Thalman, R., and R. Volkamer, 2013: Temperature dependent absorption cross-sections of O₂–O₂ collision pairs between 340 and 630 nm and at atmospherically relevant pressure. *Physical Chemistry Chemical Physics*, **15**, 15 371–15 381, https://doi.org/ 10.1039/C3CP50968K.
- Vandaele, A. C., and Coauthors, 1998: Measurements of the NO₂ absorption cross-section from 42 000 cm⁻¹ to 10 000 cm⁻¹ (238–1000 nm) at 220 K and 294 K. *Journal of Quantitative Spectroscopy and Radiative Transfer*, **59**, 171–184, https://doi.org/10.1016/S0022-4073(97)00168-4.
- Xing, C. Z., and Coauthors, 2020: Identifying the wintertime sources of volatile organic compounds (VOCs) from MAX-DOAS measured formaldehyde and glyoxal in Chongqing, southwest China. *Science of the Total Environment*, **715**, 136258, https://doi.org/10.1016/j.scitotenv.2019.136258.