Electronic Supplementary Material to: Extreme Cold Events in North America and Eurasia in November–December 2022: A Potential Vorticity Gradient Perspective*

Yao YAO^{1,2}, Wenqin ZHUO³, Zhaohui GONG², Binhe LUO⁴, Dehai LUO^{1,2}, Fei ZHENG⁵, Linhao ZHONG⁶, Fei HUANG³, Shuangmei MA⁷, Congwen ZHU⁷, and Tianjun ZHOU⁸

¹CAS Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China ²University of Chinese Academy of Sciences, Beijing 100049, China

³Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China

⁴State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China

⁵International Center for Climate and Environment Science (ICCES), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

⁶National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China

⁷State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences,

China Meteorological Administration, Beijing 100081, China

⁸State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

ESM to: Yao, Y., and Coauthors, 2023: Extreme cold events in North America and Eurasia in November–December 2022: A potential vorticity gradient perspective. *Adv. Atmos. Sci.*, **40**(6), 953–962, https://doi.org/10.1007/s00376-023-2384-3.

^{*}The online version of this article can be found at https://doi.org/10.1007/s00376-023-2384-3.

Fig. S1. The daily evolution of surface air temperature anomaly (shading, units: K) and geopotential height (contour, units: gpm, contour interval = 100 gpm) at 500 hPa from 26 November to 1 December. The green dotting region indicates the area with snowfall more than 3 mm. The 5880 gpm contour is represented by a thick black line. All the anomalies are calculated relative to the mean condition of 1979–2020.

Fig. S2. Distributions of the trajectory contribution and moisture count for the Five Great Lakes snowfall based on the Lagrangian back moisture tracking: (a, c, e) moisture contribution (mm d^{-1}); (b, d, f) trajectory count (d^{-1}). (a, b), (c, d) and (e, f) represent 17, 18 and 19 November 2022, respectively.

Fig. S3. Distributions of the trajectory contribution and moisture count for the Altay snowfall based on the Lagrangian back moisture tracking: (a, c) moisture contribution (mm d^{-1}); (b, d) trajectory count (d^{-1}). (a, b), and (c, d) represent 25 and 26 November 2022, respectively.