Electronic Supplementary Material to: Evaluating the Impacts of Cloud Microphysical and Overlap Parameters on Simulated Clouds in Global Climate Models*

Haibo WANG^{1,3}, Hua ZHANG², Bing XIE⁴, Xianwen JING⁵, Jingyi HE², and Yi LIU^{1,3}

¹Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

²State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China ³University of Chinese Academy of Sciences, Beijing 100049, China

⁴Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081, China ⁵Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor 48109, USA

ESM to: Wang, H. B., H. Zhang, B. Xie, X. W. Jing, J. Y. He, and Y. Liu, 2022: Evaluating the impacts of cloud microphysical and overlap parameters on simulated clouds in global climate models. *Adv. Atmos. Sci.*, **39**(12), 2172–2187, https://doi.org/10.1007/s00376-021-0369-7.

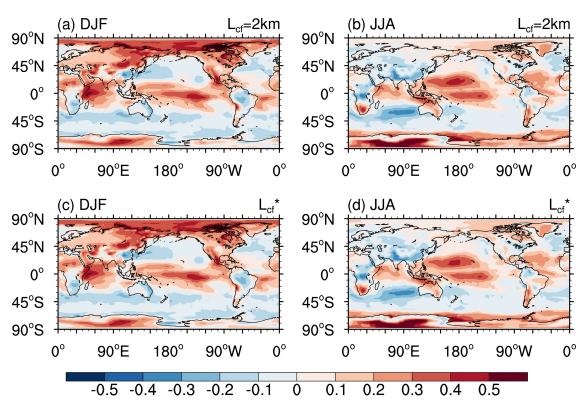


Fig. S1. Same as Fig. 3. but for one-moment schemes.

^{*}The online version of this article can be found at http://doi.org/10.1007/s00376-021-0369-7.

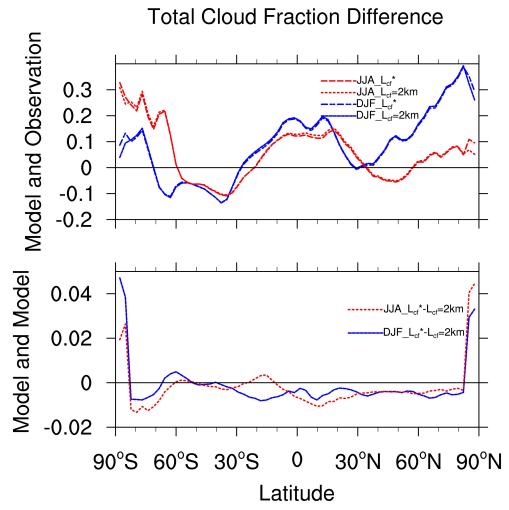


Fig. S2. Same as Fig. 4. but for one-moment schemes.