高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雨养玉米农田水热交换的环境控制机理研究

李祎君

李祎君. 雨养玉米农田水热交换的环境控制机理研究[J]. 气候与环境研究, 2015, 20(1): 71-79. doi: 10.3878/j.issn.1006-9585.2014.13181
引用本文: 李祎君. 雨养玉米农田水热交换的环境控制机理研究[J]. 气候与环境研究, 2015, 20(1): 71-79. doi: 10.3878/j.issn.1006-9585.2014.13181
LI Yijun. Environmental Controls on Water and Heat Exchanges over Rainfed Maize Cropland in Northeast China[J]. Climatic and Environmental Research, 2015, 20(1): 71-79. doi: 10.3878/j.issn.1006-9585.2014.13181
Citation: LI Yijun. Environmental Controls on Water and Heat Exchanges over Rainfed Maize Cropland in Northeast China[J]. Climatic and Environmental Research, 2015, 20(1): 71-79. doi: 10.3878/j.issn.1006-9585.2014.13181

雨养玉米农田水热交换的环境控制机理研究

doi: 10.3878/j.issn.1006-9585.2014.13181
基金项目: 公益性行业科研专项GYHY201206018,国家重点基础研究发展计划2006CB400502

Environmental Controls on Water and Heat Exchanges over Rainfed Maize Cropland in Northeast China

  • 摘要: 基于连续3年的涡相关观测数据分析了雨养玉米农田水热交换的环境控制机理.结果表明:热量(辐射与温度)与水分(土壤含水量与大气水汽压亏缺)因子是控制农田水热交换的关键因子,但随着研究时间尺度变化,其作用强度显著不同.当研究时间尺度由小时—日—月—季—年逐渐增大时,热量因子对玉米农田水热交换的影响逐渐减弱,而水分因子的影响却逐渐增强.因而,模拟玉米农田水热交换,以小时时间分辨率模拟时,能量输入应以辐射为主;以月为时间分辨率时,能量输入应以温度为主,可以提高模拟精度.另外,不同水文年型控制雨养农田水热交换的主要因子也有显著差异.湿润年,土壤水分充足,决定蒸发强度的可用能量是限制水分交换的关键因子;偏干年,农田水热交换受制于水分与能量的双重制约.因此,在估算半干旱地区水热交换时,同时还应关注不同水文年型的迥异环境控制机理,以提高不同时间尺度模型模拟精度.
  • [1] Amarakoon D, Chen A, McLean P. 2000. Estimating daytime latent heat flux and evapotranspiration in Jamaica [J]. Agricultural and Forest Meteorology, 102 (2-3): 113-124.
    [2] Alavi N, Warland J S, Berg A A. 2006. Filling gaps in evapotranspiration measurements for water budget studies: Evaluation of a Kalman filtering approach [J]. Agricultural and Forest Meteorology, 141 (1): 57-66.
    [3] Baker J M, Griffis T J. 2005. Examining strategies to improve the carbon balance of corn/soybean agriculture using eddy covariance and mass balance techniques [J]. Agricultural and Forest Meteorology, 128 (3-4): 163-177.
    [4] Choudhury B J. 2000. Seasonal and interannual variations of total evaporation and their relations with precipitation, net radiation, and net carbon accumulation for the Gediz basin area [J]. Journal of Hydrology, 229 (1-2): 77-86.
    [5] Dow C L, DeWalle D R. 2000. Trends in evaporation and Bowen ratio on urbanizing watersheds in Eastern United States [J]. Water Resources Research, 36 (7): 1835-1843.
    [6] 段红星. 2005. 作物蒸散量计算模型探讨 [J]. 山西水利, (3): 83-84. Duan Hongxing. 2005. Calculation of crop evapotranspiration model [J]. Shanxi Water Resources, (3): 83-84.
    [7] 郭家选, 梅旭荣, 卢志光, 等. 2004. 测定农田蒸散的涡度相关技术 [J]. 中国农业科学, 37 (8): 1172-1176. Guo Jiaxuan, Mei Xurong, Lu Zhiguang, et al. 2004. Field evapotranspiration measurement based on eddy covariance technology [J]. Scientia Agricultura Sinica, 37 (8): 1172-1176.
    [8] Haszpra L, Barcza Z, Davis K J, et al. 2005. Long-term tall tower carbon dioxide flux monitoring over an area of mixed vegetation [J]. Agricultural and Forest Meteorology, 132 (1-2): 58-77.
    [9] Hunt J E, Kelliher F M, Mcseveny T M, et al. 2002. Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought [J]. Agricultural and Forest Meteorology, 111 (1): 65-82.
    [10] Kellomäki S, Wang K-Y. 1999. Short-term environmental controls of heat and water vapour fluxes above a boreal coniferous forest: Model computations compared with measurements by eddy correlation [J]. Ecological Modelling, 124 (2-3): 145-173.
    [11] Kosugi Y, Takanashi S, Tanaka H, et al. 2007. Evapotranspiration over a Japanese cypress forest. I. Eddy covariance fluxes and surface conductance characteristics for 3 years [J]. Journal of Hydrology, 337 (3-4): 269-283.
    [12] Zhang Y S, Kadota T, Ohata T, et al. 2007. Environmental controls on evapotranspiration from sparse grassland in Mongolia [J]. Hydrological Processes, 21 (15): 2016-2027.
    [13] 李祎君, 许振柱, 王云龙, 等. 2007. 玉米农田水热通量动态与能量闭合分析 [J]. 植物生态学报, 31 (6): 1132-1144. Li Yijun, Xu Zhenzhu, Wang Yunlong, et al. 2007. Latent and sensible heat fluxes and energy balance in a maize agro ecosystem [J]. Acta Phytoecologica Sinica, 31 (6): 1132-1144.
    [14] Qian W H, Zhu Y F. 2001. Climate change in China from 1880 to 1998 and its impact on the environmental condition [J]. Climatic Change, 50 (4): 419-444.
    [15] Soegaard H, Jensen N O, Boegh E, et al. 2003. Carbon dioxide exchange over agricultural landscape using eddy correlation and footprint modeling [J]. Agricultural and Forest Meteorology, 114 (3-4): 153-173.
    [16] Suyker A E, Verma S B. 2008. Interannual water vapor and energy exchange in an irrigated maize-based agroecosystem [J]. Agricultural and Forest Meteorology, 148 (3): 417-427.
    [17] Wang J, Yu Q, Li J, et al. 2006. Simulation of diurnal variations of CO2, water and heat fluxes over winter wheat with a model coupled photosynthesis and transpiration [J]. Agricultural and Forest Meteorology, 137 (3-4): 194-219.
    [18] Wang K-Y, Kellomäki S, Zha T, et al. 2004. Seasonal variation in energy and water fluxes in a pine forest: An analysis based on eddy covariance and an integrated model [J]. Ecological Modelling, 179 (3): 259-279.
    [19] 许振柱, 周广胜. 2003. 陆生植物对全球变化的适应性研究进展 [J]. 自然科学进展, 13 (2): 113-119. Xu Zhenzhu, Zhou Guangsheng. 2003. Advances in terrestrial plant adaptation to global change [J]. Progress in Natural Science, 13 (2): 113-l19.
  • 加载中
计量
  • 文章访问数:  2654
  • HTML全文浏览量:  12
  • PDF下载量:  2963
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-23

目录

    /

    返回文章
    返回