高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

源项对FLEXPART模式模拟福岛核事故放射性物质长距离传输的影响

吴保见 王昆 贾立 郭瑞萍

吴保见, 王昆, 贾立, 郭瑞萍. 源项对FLEXPART模式模拟福岛核事故放射性物质长距离传输的影响[J]. 气候与环境研究, 2017, 22(1): 10-22. doi: 10.3878/j.issn.1006-9585.2016.15246
引用本文: 吴保见, 王昆, 贾立, 郭瑞萍. 源项对FLEXPART模式模拟福岛核事故放射性物质长距离传输的影响[J]. 气候与环境研究, 2017, 22(1): 10-22. doi: 10.3878/j.issn.1006-9585.2016.15246
Baojian WU, Kun WANG, Li JIA, Ruiping GUO. Influences of Source Term on Long-Range Transport of Radionuclides from the Fukushima Daiichi Nuclear Accident with FLEXPART Model[J]. Climatic and Environmental Research, 2017, 22(1): 10-22. doi: 10.3878/j.issn.1006-9585.2016.15246
Citation: Baojian WU, Kun WANG, Li JIA, Ruiping GUO. Influences of Source Term on Long-Range Transport of Radionuclides from the Fukushima Daiichi Nuclear Accident with FLEXPART Model[J]. Climatic and Environmental Research, 2017, 22(1): 10-22. doi: 10.3878/j.issn.1006-9585.2016.15246

源项对FLEXPART模式模拟福岛核事故放射性物质长距离传输的影响

doi: 10.3878/j.issn.1006-9585.2016.15246
基金项目: 

国家科技重大专项-CAP1400安全审评关键技术研究项目 Grants 2013ZX06002001

详细信息
    作者简介:

    吴保见,男,1991年出生,硕士研究生,主要从事大气污染扩散模式及遥感应用研究。E-mail:wubj@radi.ac.cn

    通讯作者:

    王昆,E-mail:wangkun@radi.ac.cn

  • 中图分类号: P404

Influences of Source Term on Long-Range Transport of Radionuclides from the Fukushima Daiichi Nuclear Accident with FLEXPART Model

Funds: 

National Science and Technology Major Project of the Ministry of Science and Technology of China:CAP1400 Safety Review Key TechnologyStudy Grants 2013ZX06002001

  • 摘要: 对包括拉格朗日粒子模式在内的大气扩散模式,提供准确的源项有助于获取更好的模拟结果。以日本福岛核电站2011年3月发生的核泄漏事故为研究对象,采用日本原子能机构Terada源项以及挪威大气研究所Stohl源项,利用FLEXPART(FLEXible PARTicle dispersion mode)模拟了放射性物质137Cs在全球大气中扩散传输的过程,并利用大气辐射监测数据讨论了基于两种源项模拟烟云的时空分布特征,探讨了源项对模拟结果的不确定性影响。结果显示:Terada源项及Stohl源项之间释放总量、释放速率、释放高度等虽然略有差别,但总体趋势描述相似,使得基于两源项的模拟烟云的扩散过程及影响区域基本一致。两模拟烟云在中纬度西风带作用下,均表现为自西向东扩散,经过太平洋、美洲大陆、欧洲,最后在整个北半球传输。基于两源项在亚洲-太平洋及北美大陆等近距离的模拟烟云的首次到达时间与首次监测时间吻合度较好,在全球尺度上基于Stohl源项的模拟在首次到达时间方面表现更优。其次,基于两源项进行全球尺度的模拟,近距离站点的模拟效果优于远距离站点模拟效果,且基于Stohl源项的模拟精度较好,Terada源项可能存在低估。另外模式进行全球尺度的模拟时,针对不同粒子数目对模拟结果的影响进行了分析,发现粒子数目的多寡对模拟精度有所影响,也影响模拟烟云扩散后期的疏密程度。
  • 图  1  计算网格浓度场的示意图。粒子的位置被标记为“+”

    Figure  1.  Illustration of the method used to calculate gridded concentration.The particle position is marked by “+”

    图  2  Terada 源项的释放速率、释放源高度随时间变化图

    Figure  2.  Estimated temporal changes in the release rate and height of 137Cs by Terada

    图  3  Stohl 源项的释放速率随时间的变化图

    Figure  3.  Estimated temporal changes in the release rate of 137Cs by Stohl

    图  4  CTBTO 的38 个站点以及伯克利大学的UCB 站点及日本国立环境研究所Tsukuba 站点分布

    Figure  4.  Locations of the 38 CTBTO(Comprehensive nuclear-Test-Ban Treaty Organization)measurement stations, the UCB(University of California, Berkeley)station and the Tsukuba station of National Institute for Environmental Studies

    图  5  EXP-Terada 试验获得的大气边界层内(2000 m 以下)的放射性物质137Cs 浓度:(a)2011 年3 月14 日08:00(协调世界时,下同);(b)2011年3 月17 日01:00;(c)2011 年3 月21 日17:00;(d)2011 年3 月28 日00:00;(e)2011 年4 月17 日06:00;(f)2011 年4 月24 日00:00

    Figure  5.  Temporal changes in radioactivity concentration in ABL(Atmospheric Boundary Layer)(below 2000 m)from EXP-Terada:(a)0800 UTC 14 Mar2011;(b)0100 UTC 17 Mar 2011;(c)1700 UTC 21 Mar 2011;(d)0000 UTC 28 Mar 2011;(e)0600 UTC 17 Apr 2011;(f)0000 UTC 24 Apr 2011

    图  6  EXP-Stohl 试验获得的大气边界层内(2000 m 以下)的放射性物质137Cs 浓度:(a)2011 年3 月14 日08:00;(b)2011 年3 月16 日14:00;(c)2011 年3 月21 日09:00;(d)2011 年3 月26 日14:00;(e)2011 年4 月16 日11:00;(f)2011 年4 月24 日00:00

    Figure  6.  Temporal changes in radioactivity concentration in ABL(Below 2000 m)from EXP-Stohl:(a)0800 UTC 14 Mar 2011;(b)1400 UTC 16 Mar 2011;(c)0900 UTC 21 Mar 2011;(d)1400 UTC 26 Mar 2011;(e)1100 UTC 16 Apr 2011;(f)0000 UTC 24 Apr 2011

    图  7  EXP-Terada和(b)EXP-Stohl 模拟获得CTBTO 站点的137Cs 模拟值与观测值的散点图

    Figure  7.  Scatter plots of the observed and simulated 137Cs radioactivity concentration of CTBTO stations from(a)EXP-Terada and(b)EXP-Stohl

    图  8  EXP-Stohl 及EXP-Terada 试验中相关站点137Cs 浓度模拟值与观测值的时间序列对比:(a)KIP39;(b)UCB;(c)USP71;(d)PHP52;(e)FRP28;(f)DEP33;(g)CAP17;(h)MNP45

    Figure  8.  Comparisons of time series of the observed and simulated 137Cs radioactivity concentration from EXP-Stohl and EXP-Terada:(a)KIP39;(b)UCB;(c)USP71;(d)PHP52;(e)FRP28;(f)DEP33;(g)CAP17;(h)MNP45

    图  9  EXP-Stohl 及EXP-Terada 试验在(a)JPP38、(b)Tsukuba 观测站点137Cs 模拟值与观测值的时间序列对比

    Figure  9.  Comparisons of time series of the observed and simulated 137Cs radioactivity concentration at(a)JPP38 and(b)Tsukuba from EXP-Stohl and EXP-Terada

    图  10  2011 年3 月(a)17 日与(b)19 日850 hPa 的位势高度(单位:gpm)及风场示意图

    Figure  10.  850-hPa geopotential height(gpm)and wind on(a)17 Mar and(b)19 Mar 2011

    图  11  EXP- Terada2 试验获得的大气边界层内(2000 m 以下)的放射性物质137Cs 浓度:(a)2011 年3 月14 日08:00;(b)2011 年3 月17 日14:00;(c)2011 年3 月21 日17:00;(d)2011 年3 月28 日00:00;(e)2011 年4 月17 日06:00;(f)2011 年4 月24 日00:00

    Figure  11.  Temporal changes in radioactivity concentration in ABL(Below 2000 m)from EXP-Terada2:(a)0800 UTC 14 Mar 2011;(b)1400 UTC 17 Mar 2011;(c)1700 UTC 21 Mar 2011;(d)0000 UTC 28 Mar 2011;(e)0600 UTC 17 Apr 2011;(f)0000 UTC 24 Apr 2011

    表  1  试验方案

    Table  1.   Experimental design

    试验释放日期释放总量/pBq pBq时间段粒子总数
    EXP-Terada3 月11 日至5 月1 日8.8630886660
    EXP-Stohl3 月11 日至4 月20 日36.603243663606
    下载: 导出CSV

    表  2  模拟的烟云首次到达时间与观测结果相差天数的站数统计分析

    Table  2.   Statistical analysis of the differences in time(number of days)of first detection of radioactive plumes at stations between simulations and observations

    Terada 站数Stohl 站数
    相差天数0 d65
    相差天数1 d816
    相差天数2 d44
    相差天数3 d33
    相差天数4 d75
    相差天数5 d40
    相差天数>5 d32
    无监测数据44
    总站数3838
    下载: 导出CSV
  • [1] 安兴琴, 姚波, 李岩, 等. 2014. 利用FLEXPART模式反演中国区域SF6排放量[J]. 环境科学学报, 34(5):1133-1140. doi: 10.13671/j.hjkxxb.2014.0178

    An Xingqin, Yao Bo, Li Yan, et al. 2014. Estimating emission of SF6 in China by atmospheric observation data and inverse modeling[J]. Acta Scientiae Circumstantiae (in Chinese), 34(5):1133-1140, doi:10.13671/j.hjkxxb. 2014.0178.
    [2] Angevine W M, Brioude J, McKeen S, et al. 2014. Uncertainty in Lagrangian pollutant transport simulations due to meteorological uncertainty from a mesoscale WRF ensemble[J]. Geoscientific Model Development, 7(6):2817-2829, doi: 10.5194/gmd-7-2817-2014.
    [3] Arnold D, Maurer C, Wotawa G, et al. 2015. Influence of the meteorological input on the atmospheric transport modelling with FLEXPART of radionuclides from the Fukushima Daiichi nuclear accident[J]. Journal of Environmental Radioactivity, 139:212-225, doi: 10.1016/j.jenvrad.2014.02.013.
    [4] BGR. 2011. Ausbreitungssimulationen von Radionukliden emittiert durch den Reaktorunfall in Fukushima, Japan[EB/OL]. http://www.bgr.bund.de/DE/Themen/Erdbeben-Gefaehrdungsanalysen/Seismologie/Kernwaffenteststopp/Verifikation/Atmosphaer-Transport/Besondere%20Ereignisse/atm_fukushima_inhalt.html.
    [5] 蔡旭晖. 2008. 湍流微气象观测的印痕分析方法及其应用拓展[J]. 大气科学, 32(1):123-132. doi: 10.3878/j.issn.1006-9895.2008.01.11

    Cai Xuhui. 2008. Footprint analysis in micrometeorology and its extended applications[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(1):123-132, doi:10.3878/j.issn. 1006-9895.2008.01.11.
    [6] 陈晓秋, 杨端节, 李冰. 2012. 利用福岛第一核电厂事故期间环境监测资料反推事故释放源项[J]. 核化学与放射化学, 34(2):83-87. http://www.cnki.com.cn/Article/CJFDTOTAL-HXFS201202003.htm

    Chen Xiaoqiu, Yang Duanjie, Li Bing. 2012. Reverse estimation of accidental release amounts from Fukushima Daiichi nuclear power plant by environmental monitoring data[J]. Journal of Nuclear and Radiochemistry (in Chinese), 34(2):83-87. http://www.cnki.com.cn/Article/CJFDTOTAL-HXFS201202003.htm
    [7] Chino M, Nakayama H, Nagai H, et al. 2011. Preliminary estimation of release amounts of 131I and 137Cs accidentally discharged from the Fukushima Daiichi nuclear power plant into the atmosphere[J]. Journal of Nuclear Science and Technology, 48(7):1129-1134, doi: 10.1080/18811248.2011.9711799.
    [8] Christoudias T, Lelieveld J. 2013. Modelling the global atmospheric transport and deposition of radionuclides from the Fukushima Dai-ichi nuclear accident[J]. Atmospheric Chemistry and Physics, 13(3):1425-1438, doi: 10.5194/acp-13-1425-2013.
    [9] Draxler R, Arnold D, Chino M, et al. 2015. World Meteorological Organization's model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi nuclear power plant accident[J]. Journal of Environmental Radioactivity, 139:172-184, doi:10.1016/j. jenvrad.2013.09.014.
    [10] Gahein A, Wahab M M A, Gaheen M A, et al. 2013. Simulation of nuclear accident caesium-137 contamination using FLEXPART mode[J]. International Journal of Advanced Research, 1(8):516-526. http://cn.bing.com/academic/profile?id=4c68818e05b8cc616a0fe49a688c8d4b&encoded=0&v=paper_preview&mkt=zh-cn
    [11] James P, Stohl A, Forster C, et al. 2003. A 15-year climatology of stratosphere-troposphere exchange with a Lagrangian particle dispersion model 2. Mean climate and seasonal variability[J]. J. Geophys. Res., 108(D12), doi: 10.1029/2002JD002639.
    [12] Katata G, Ota M, Terada H, et al. 2012a. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi nuclear power plant accident. Part I:Source term estimation and local-scale atmospheric dispersion in early phase of the accident[J]. Journal of Environmental Radioactivity, 109:103-113, doi:10.1016/j.jenvrad.2012. 02.006.
    [13] Katata G, Terada H, Nagai H, et al. 2012b. Numerical reconstruction of high dose rate zones due to the Fukushima Dai-ichi nuclear power plant accident[J]. Journal of Environmental Radioactivity, 111:2-12, doi: 10.1016/j.jenvrad.2011.09.011.
    [14] Korsakissok I, Mathieu A, Didier D. 2013. Atmospheric dispersion and ground deposition induced by the Fukushima nuclear power plant accident:A local-scale simulation and sensitivity study[J]. Atmos. Environ., 70:267-279, doi: 10.1016/j.atmosenv.2013.01.002.
    [15] Leadbetter S J, Hort M C, Jones A R, et al. 2015. Sensitivity of the modelled deposition of Caesium-137 from the Fukushima Dai-ichi nuclear power plant to the wet deposition parameterisation in NAME[J]. Journal of Environmental Radioactivity, 139:200-211, doi:10.1016/j. jenvrad.2014.03.018.
    [16] Lin W, Chen L, Yu W, et al. 2015. Radioactivity impacts of the Fukushima nuclear accident on the atmosphere[J]. Atmos. Environ., 102:311-322, doi: 10.1016/j.atmosenv.2014.11.047.
    [17] Marandino C A, Tegtmeier S, Krüger K, et al. 2013. Dimethylsulphide (DMS) emissions from the western Pacific Ocean:A potential marine source for stratospheric sulphur?[J]. Atmospheric Chemistry and Physics, 13(16):8427-8437, doi: 10.5194/acp-13-8427-2013.
    [18] Marzo G A. 2014. Atmospheric transport and deposition of radionuclides released after the Fukushima Dai-chi accident and resulting effective dose[J]. Atmos. Environ., 94:709-722, doi:10.1016/j.atmosenv.2014. 06.009.
    [19] Morino Y, Ohara T, Nishizawa M. 2011. Atmospheric behavior, deposition, and budget of radioactive materials from the Fukushima Daiichi nuclear power plant in March 2011[J]. Geophys. Res. Lett., 38(7):L00G11, doi: 10.1029/2011GL048689.
    [20] Ryan M T. 2012. Editor's note on Fukushima[J]. Health Physics, 102(5):481, doi: 10.1097/HP.0b013e31824d52b7.
    [21] Sakamoto M S, Ambrizzi T, Poveda G. 2011. Moisture sources and life cycle of convective systems over western Colombia[J]. Advances in Meteorology, 2011:890759, doi: 10.1155/2011/890759.
    [22] 盛黎, 宋振鑫, 胡江凯, 等. 2014. 大气扩散集合预报技术和确定性预报技术在日本福岛核事故全球扩散中的对比分析[J]. 中国科学:地球科学, 44(11):2554-2564. doi: 10.1007/s11430-014-4872-x

    Sheng Li, Song Zhenxin, Hu Jiangkai, et al. 2015. The comparison of ensemble or deterministic dispersion modeling on global dispersion during Fukushima Dai-ichi nuclear accident[J]. Science China Earth Sciences, 58(3):356-370, doi: 10.1007/s11430-014-4872-x.
    [23] Stohl A, Hittenberger M, Wotawa G. 1998. Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data[J]. Atmos. Environ., 32(24):4245-4264, doi: 10.1016/S1352-2310(98)00184-8.
    [24] Stohl A, Sodemann H, Eckhardt S, et al. 2011. The Lagrangian particle dispersion model FLEXPART version 8.2[K]. FLEXPART User Guide. https://www.flexpart.eu/downloads/26.
    [25] Stohl A, Seibert P, Wotawa G, et al. 2012. Xenon-133 and Caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant:Determination of the source term, atmospheric dispersion, and deposition[J]. Atmospheric Chemistry and Physics, 12(5):2313-2343, doi: 10.5194/acp-12-2313-2012.
    [26] Terada H, Katata G, Chino M, et al. 2012. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi nuclear power plant accident. Part II:Verification of the source term and analysis of regional-scale atmospheric dispersion[J]. Journal of Environmental Radioactivity, 112:141-154, doi: 10.1016/j.jenvrad.2012.05.023.
    [27] 王海洋, 黄树明, 王晓霞, 等. 2011. 日本福岛第一核电站事故源项及后果评价[J]. 辐射防护通讯, 31(3):7-11. doi: 10.3969/j.issn.1004-6356.2011.03.003

    Wang Haiyang, Huang Shuming, Wang Xiaoxia, et al. 2011. Fukushima Daiichi NPS accident source term and consequence assessment[J]. Radiation Protection Bulletin (in Chinese), 31(3):7-11, doi: 10.3969/j.issn.1004-6356.2011.03.003.
    [28] 王鹏飞, 费建芳, 程小平, 等. 2013. 气旋活动对福岛核污染物扩散影响的模拟研究[J]. 环境科学研究, 26(1):50-56. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201301009.htm

    Wang Pengfei, Fei Jianfang, Cheng Xiaoping, et al. 2013. Simulation study of extratropical cyclone activities on the nuclear material dispersion from the damaged Fukushima nuclear power plant[J]. Research of Environmental Sciences (in Chinese), 26(1):50-56. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201301009.htm
    [29] Weaver C, Kiemle C, Kawa S R, et al. 2014. Retrieval of methane source strengths in Europe using a simple modeling approach to assess the potential of spaceborne lidar observations[J]. Atmospheric Chemistry and Physics, 14(5):2625-2637, doi: 10.5194/acp-14-2625-2014.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1874
  • HTML全文浏览量:  23
  • PDF下载量:  1464
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-03
  • 网络出版日期:  2016-05-06
  • 刊出日期:  2017-01-01

目录

    /

    返回文章
    返回