高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对流层臭氧影响植被研究进展:观测、参数化方案及应用

周智敏 李芳 曾晓东 倪长健

周智敏, 李芳, 曾晓东, 倪长健. 对流层臭氧影响植被研究进展:观测、参数化方案及应用[J]. 气候与环境研究, 2017, 22(5): 613-622. doi: 10.3878/j.issn.1006-9585.2017.16215
引用本文: 周智敏, 李芳, 曾晓东, 倪长健. 对流层臭氧影响植被研究进展:观测、参数化方案及应用[J]. 气候与环境研究, 2017, 22(5): 613-622. doi: 10.3878/j.issn.1006-9585.2017.16215
Zhimin ZHOU, Fang LI, Xiaodong ZENG, Changjian NI. The Research Progress in Impacts of Tropospheric Ozone on Vegetation: Observations, Parameterization, and Application[J]. Climatic and Environmental Research, 2017, 22(5): 613-622. doi: 10.3878/j.issn.1006-9585.2017.16215
Citation: Zhimin ZHOU, Fang LI, Xiaodong ZENG, Changjian NI. The Research Progress in Impacts of Tropospheric Ozone on Vegetation: Observations, Parameterization, and Application[J]. Climatic and Environmental Research, 2017, 22(5): 613-622. doi: 10.3878/j.issn.1006-9585.2017.16215

对流层臭氧影响植被研究进展:观测、参数化方案及应用

doi: 10.3878/j.issn.1006-9585.2017.16215
基金项目: 

国家自然科学基金项目 41475099

国家自然科学基金项目 41575109

详细信息
    作者简介:

    周智敏, 女, 1991年出生, 硕士研究生, 主要从事对流层臭氧对植被影响模拟研究.E-mail:zhouzhimin@mail.iap.ac.cn

    通讯作者:

    李芳, E-mail:lifang@mail.iap.ac.cn

  • 中图分类号: X503.23

The Research Progress in Impacts of Tropospheric Ozone on Vegetation: Observations, Parameterization, and Application

Funds: 

National Natural Science Foundation of China 41475099

National Natural Science Foundation of China 41575109

  • 摘要: 对流层臭氧(O3)作为最重要的大气污染物之一,对植物的形态特征和生理生化指标有着重要影响;并通过作用于陆面植被间接改变全球和区域的碳循环以及气候和环境。本文系统地回顾了对流层臭氧影响陆面植被的观测事实,主要包括其对光合作用、气孔导度、叶面积、生物量、产量等方面的影响;归纳和分析了常用的O3暴露指数(ozone exposure index)和O3影响植被的参数化方案的优缺点;并介绍这些参数化方案应用于生态模式和地球系统模式,模拟O3通过作用于陆面植被对碳、水、能量通量和状态的影响。最后探讨了O3影响植被在观测、参数化方案及其模拟应用方面亟需解决的问题以及未来发展方向。
  • 图  1  对流层O3对植物生理生化指标影响相关机制。符号−、+、0表示(目前已有的上百篇相关观测研究所显示的)O3浓度升高对该植被生理生化指标的影响为减少、增加、或可略。红色符号为O3对植物生理生化指标的主导影响方向

    Figure  1.  Mechanisms related to tropospheric O3 impacts on vegetation. The symbols −, +, and 0 denote that O3 tends to reduce, increase, or has limited impacts on the physiological and biochemical characteristics of plants shown in earlier studies. The dominant sign of O3 influence is highlighted in red

    图  2  O3影响植被参数化方案二和方案三中不同PFT的CUOY和O3对净光合速率影响率间映射关系(High和Low分别表示植被对O3的高低敏感程度)

    Figure  2.  Relationships between cumulative uptake of O3 above a threshold (CUOY) and relative changes in net photosynthesis rate in the second and third parameterization schemes (High and Low represent high and low sensitivity of vegetation to O3, respectively)

    表  1  方案二和方案三O3影响植被参数化方案中不同PFT的O3通量阈值Y

    Table  1.   O3 flux thresholds Y for plant function type (PFT) s used in the second and third parameterization schemes

    方案 O3通量阈值Y
    阔叶树 针叶树 C3草与农作物 C4草 灌木
    方案二 1.6 1.6 5.0 5.0 1.6
    方案三 0.8 0.8 0.8 0.8 0.8
    下载: 导出CSV
  • [1] Aas K S. 2012. Ozone suppression of carbon uptake by vegetation: A model study of the effect of ozone on carbon uptake and storage in boreal forests in northern Europe [D]. M. S. thesis, Department of Geosciences, Faculty of Mathematics and Nature Sciences, University of Oslo, 86pp.
    [2] Ainsworth E A, Yendrek C R, Sitch S, et al. 2012. The effects of tropospheric ozone on net primary productivity and implications for climate change [J]. Annual Review of Plant Biology, 63 (1): 637-661, doi: 10.1146/annurev-arplant-042110-103829.
    [3] Akhtar N, Yamaguchi M, Inada H, et al. 2010. Effects of ozone on growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat (Triticum aestivum L.) [J]. Environmental Pollution, 158 (5): 1763-1767, doi: 10.1016/j.envpol.2009.11.011.
    [4] Anav A, De Marco A, Proietti C, et al. 2016. Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests [J]. Global Change Biology, 22 (4): 1608-1627, doi: 10.1111/gcb.13138.
    [5] Ashmore M R. 2005. Assessing the future global impacts of ozone on vegetation [J]. Plant, Cell and Environment, 28 (8): 949-964, doi: 10.1111/j.1365-3040.2005.01341.x.
    [6] Avnery S, Mauzerall D L, Liu J F, et al. 2011. Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O3 pollution [J]. Atmos. Environ., 45 (13): 2297-2309, doi: 10.1016/j.atmosenv.2011.01. 002.
    [7] Booker F L, Burkey K O, Pursley W A, et al. 2007. Elevated carbon dioxide and ozone effects on peanut: Ⅰ. Gas-exchange, biomass, and leaf chemistry [J]. Crop Science, 47 (4): 1475-1487, doi: 10.2135/cropsci2006.08.0537.
    [8] Cassimiro J C, Moura B B, Alonso R, et al. 2016. Ozone stomatal flux and O3 concentration-based metrics for Astronium graveolens Jacq., a Brazilian native forest tree species [J]. Environmental Pollution, 213: 1007-1015, doi: 10.1016/j.envpol.2016.01.005.
    [9] Chutteang C, Booker F L, Na-Ngern P, et al. 2016. Biochemical and physiological processes associated with the differential ozone response in ozone-tolerant and sensitive soybean genotypes [J]. Plant Biology, 18 (S1): 28-36, doi: 10.1111/plb.12347.
    [10] Clark D B, Mercado L M, Sitch S, et al. 2011. The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics [J]. Geoscientific Model Development, 4 (3): 701-722, doi: 10.5194/gmd-4-701-2011.
    [11] Coleman M D, Isebrands J G, Dickson R E, et al. 1995. Photosynthetic productivity of aspen clones varying in sensitivity to tropospheric ozone [J]. Tree Physiology, 15 (9): 585-592, doi: 10.1093/treephys/15.9.585.
    [12] D'Amato G. 2011. Effects of climatic changes and urban air pollution on the rising trends of respiratory allergy and asthma [J]. Multidisciplinary Respiratory Medicine, 6 (1): 28, doi: 10.1186/2049-6958-6-1-28.
    [13] Dan L, Ji J J. 2007. The surface energy, water, carbon flux and their intercorrelated seasonality in a global climate-vegetation coupled model [J]. Tellus B, 59 (3): 425-438, doi: 10.1111/j.1600-0889.2007.00274.x.
    [14] Danielsson H, Karlsson G P, Karlsson P E, et al. 2003. Ozone uptake modelling and flux-response relationships—An assessment of ozone-induced yield loss in spring wheat [J]. Atmos. Environ., 37 (4): 475-485, doi: 10.1016/S1352-2310(02)00924-X.
    [15] Dumont J, Spicher F, Montpied P, et al. 2013. Effects of ozone on stomatal responses to environmental parameters (blue light, red light, CO2 and vapour pressure deficit) in three Populus deltoids × Populus nigra genotypes [J]. Environmental Pollution, 173: 85-96, doi: 10.1016/j.envpol.2012.09.026.
    [16] Fang Y Y, Mauzerall D L, Liu J F, et al. 2013. Impacts of 21st century climate change on global air pollution-related premature mortality [J]. Climatic Change, 121 (2): 239-253, doi: 10.1007/s10584-013-0847-8.
    [17] Felzer B, Kicklighter D, Melillo J, et al. 2004. Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model [J]. Tellus B, 56: 230-248, doi: 10.3402/tellusb.v56i3.16415.
    [18] 冯兆忠, 小林和彦, 王效科, 等. 2008.小麦产量形成对大气臭氧浓度升高响应的整合分析[J].科学通报, 53 (24): 3080-3085. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200824016.htm

    Feng Zhaozhong, Kobayashi K, Wang Xiaoke, et al. 2009. A meta-analysis of responses of wheat yield formation to elevated ozone concentration [J]. Chinese Science Bulletin, 54 (2): 249-255. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200824016.htm
    [19] Grams T E E, Anegg S, Häberle K H, et al. 1999. Interactions of chronic exposure to elevated CO2 and O3 levels in the photosynthetic light and dark reactions of European beech (Fagus sylvatica) [J]. New Phytologist, 144 (1): 95-107, doi: 10.1046/j.1469-8137.1999.00486.x.
    [20] Gregg J W, Jones C G, Dawson T E. 2006. Physiological and developmental effects of O3 on cottonwood growth in urban and rural sites [J]. Ecological Applications, 16 (6): 2368-2381, doi: 10.1890/1051-0761 (2006)016[2368:PADEOO]2.0.CO;2.
    [21] Harmens H, Mills G, Hayes F, et al. 2015. Twenty eight years of ICP Vegetation: An overview of its activities [J]. Annali di Botanica, 5: 31-43, doi: 10.4462/annbotrm-13064.
    [22] Hassan I A, Ashmore M R, Bell J N B. 1994. Effects of O3 on the stomatal behaviour of Egyptian varieties of radish (Raphanus sativus L. cv. Baladey) and turnip (Brassica rapa L. cv. Sultani)[J]. New Phytologist, 128 (2): 243-249, doi: 10.1111/j.1469-8137.1994.tb04008.x.
    [23] Holmes C D. 2014. Air pollution and forest water use [J]. Nature, 507 (7491): E1-E2, doi: 10.1038/nature13113.
    [24] Hoshika Y, Hajima T, Shimizu Y, et al. 2011. Estimation of stomatal ozone uptake of deciduous trees in East Asia [J]. Annals of Forest Science, 68 (3): 607-616, doi: 10.1007/s13595-011-0051-9.
    [25] Inada H, Kondo T, Akhtar N, et al. 2012. Relationship between cultivar difference in the sensitivity of net photosynthesis to ozone and reactive oxygen species scavenging system in Japanese winter wheat (Triticum aestivum) [J]. Physiologia Plantarum, 146 (2): 217-227, doi: 10.1111/j. 1399-3054.2012.01618.x.
    [26] IPCC. 2013. Climate Change 2013: The Physical Science Basis [M]. Stocker T F, Qin D, Plattner G K, et al., Eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
    [27] Ji J J. 1995. A climate-vegetation interaction model: Simulating physical and biological processes at the surface [J]. Journal of Biogeography, 22 (2-3): 445-451, doi: 10.2307/2845941.
    [28] Karlsson P E, Medin E L, Wallin G, et al. 1997. Effects of ozone and drought stress on the physiology and growth of two clones of Norway spruce (Picea abies) [J]. New Phytologist, 136 (2): 265-275, doi: 10.1046/j.1469-8137.1997.00735.x.
    [29] Karlsson P E, Uddling J, Braun S, et al. 2004. New critical levels for ozone effects on young trees based on AOT40 and simulated cumulative leaf uptake of ozone [J]. Atmos. Environ., 38 (15): 2283-2294, doi: 10.1016/j.atmosenv.2004.01.027.
    [30] Kouterick K B, Skelly J M, Fredericksen T S, et al. 2000. Foliar injury, leaf gas exchange and biomass responses of black cherry (Prunus serotina Ehrh.) half-sibling families to ozone exposure [J]. Environmental Pollution, 107 (1): 117-126, doi: 10.1016/S0269-7491(99)00125-6.
    [31] Kronfuß G, Polle A, Tausz M, et al. 1998. Effects of ozone and mild drought stress on gas exchange, antioxidants and chloroplast pigments in current-year needles of young Norway spruce [Picea abies (L.) Karst.] [J]. Trees, 12 (8): 482-489, doi: 10.1007/PL00009730.
    [32] Kvalevåg M M, Myhre G. 2013. The effect of carbon-nitrogen coupling on the reduced land carbon sink caused by tropospheric ozone [J]. Geophys. Res. Lett., 40 (12): 3227-3231, doi: 10.1002/grl.50572.
    [33] Leverenz J W, Paludan-Müller G, Saxe H. 1999. Response to three seasons of elevated ozone in the progeny of healthy and unhealthy Norway spruce trees from a plantation with the 'top dying' syndrome [J]. New Phytologist, 142 (2): 259-270, doi: 10.1046/j.1469-8137.1999.00387.x.
    [34] Li F, Bond-Lamberty B, Levis S. 2014. Quantifying the role of fire in the Earth system—Part 2: Impact on the net carbon balance of global terrestrial ecosystems for the 20th century [J]. Biogeosciences, 11 (5): 1345-1360, doi: 10.5194/bg-11-1345-2014.
    [35] Li C H, Meng J, Guo L Y, et al. 2016. Effects of ozone pollution on yield and quality of winter wheat under flixweed competition [J]. Environmental and Experimental Botany, 129: 77-84, doi: 10.1016/j.envexpbot.2015.11.011.
    [36] Li F, Lawrence D M. 2017. Role of fire in the global land water budget during the twentieth century due to changing ecosystems [J]. J. Climate, 30: 1893-1908, doi: 10.1175/JCLI-D-16-0460.1.
    [37] Lombardozzi D, Sparks J P, Bonan G. 2013. Integrating O3 influences on terrestrial processes: Photosynthetic and stomatal response data available for regional and global modeling [J]. Biogeosciences, 10 (11): 6815-6831, doi: 10.5194/bg-10-6815-2013.
    [38] Lombardozzi D, Levis S, Bonan G, et al. 2015. The influence of chronic ozone exposure on global carbon and water cycles [J]. J. Climate, 28 (1): 292-305, doi: 10.1175/JCLI-D-14-00223.1.
    [39] Maier-Maercker U. 1989. Delignification of subsidiary and guard cell walls of Picea abies (L.) Karst. by fumigation with ozone [J]. Trees, 3 (1): 57-64, doi: 10.1007/BF00202401.
    [40] Manninen S, Siivonen N, Timonen U, et al. 2003. Differences in ozone response between two Finnish wild strawberry populations [J]. Environmental and Experimental Botany, 49 (1): 29-39, doi: 10.1016/S0098-8472(02)00046-1.
    [41] McGrath J M, Betzelberger A M, Wang S W, et al. 2015. An analysis of ozone damage to historical maize and soybean yields in the United States [J]. Proceedings of the National Academy of Sciences of the United States of America, 112 (46): 14390-14395, doi: 10.1073/pnas.1509777112.
    [42] Mills G, Harmens H, Wagg S, et al. 2016. Ozone impacts on vegetation in a nitrogen enriched and changing climate [J]. Environmental Pollution, 208: 898-908, doi: 10.1016/j.envpol.2015.09.038.
    [43] Oguntimehin I, Eissa F, Sakugawa H. 2010. Simultaneous ozone fumigation and fluoranthene sprayed as mists negatively affected cherry tomato (Lycopersicon esculentum Mill) [J]. Ecotoxicology and Environmental Safety, 73 (5): 1028-1033, doi: 10.1016/j.ecoenv.2010.04.003.
    [44] Ollinger S V, Aber J D, Reich P B. 1997. Simulating ozone effects on forest productivity: Interactions among leaf-, canopy-, and stand-level processes [J]. Ecological Applications, 7 (4): 1237-1251, doi: 10.1890/1051-0761 (1997)007[1237:SOEOFP]2.0.CO;2.
    [45] Pääkkönen E, Vahala J, Pohjola M, et al. 1998. Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress [J]. Plant, Cell and Environment, 21 (7): 671-684, doi: 10.1046/j.1365-3040.1998.00303.x.
    [46] Pacifico F, Folberth G A, Sitch S, et al. 2015. Biomass burning related ozone damage on vegetation over the Amazon forest: A model sensitivity study [J]. Atmospheric Chemistry and Physics, 15 (5): 2791-2804, doi: 10.5194/acp-15-2791-2015.
    [47] Pleijel H, Danielsson H, Ojanperä K, et al. 2004. Relationships between ozone exposure and yield loss in European wheat and potato—A comparison of concentration-and flux-based exposure indices [J]. Atmos. Environ., 38 (15): 2259-2269, doi: 10.1016/j.atmosenv.2003.09.076.
    [48] Pleijel H, Danielsson H, Emberson L, et al. 2007. Ozone risk assessment for agricultural crops in Europe: Further development of stomatal flux and flux-response relationships for European wheat and potato [J]. Atmos. Environ., 41 (14): 3022-3040, doi: 10.1016/j.atmosenv.2006.12.002.
    [49] Reich P B. 1987. Quantifying plant response to ozone: A unifying theory [J]. Tree Physiology, 3 (1): 63-91, doi: 10.1093/treephys/3.1.63.
    [50] Ren W, Tian H Q, Chen G S, et al. 2007a. Influence of ozone pollution and climate variability on net primary productivity and carbon storage in China's grassland ecosystems from 1961 to 2000 [J]. Environmental Pollution, 149 (3): 327-335, doi: 10.1016/j.envpol.2007.05.029.
    [51] Ren W, Tian H Q, Liu M L, et al. 2007b. Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China [J]. J. Geophys. Res., 112: D22S09, doi: 10.1029/2007JD008521.
    [52] Ren W, Tian H Q, Tao B, et al. 2012. China's crop productivity and soil carbon storage as influenced by multifactor global change [J]. Global Change Biology, 18 (9): 2945-2957, doi: 10.1111/j.1365-2486.2012. 02741.x.
    [53] Sadeke M, Tai A P K, Lombardozzi D, et al. 2015. Impacts of ozone-vegetation interactions and biogeochemical feedbacks on atmospheric composition and air quality under climate change [C]//2015 AGU Fall Meeting. San Francisco, 1.
    [54] Sitch S, Cox P M, Collins W J, et al. 2007. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink [J]. Nature, 448 (7155): 791-794, doi: 10.1038/nature06059.
    [55] Sun G D, Mu M. 2016. A new approach to identify the sensitivity and importance of physical parameters combination within numerical models using the Lund-Potsdam-Jena (LPJ) model as an example [J]. Theor. Appl. Climatol., 128 (3-4): 587-601, doi: 10.1007/s00704-015-1690-9.
    [56] Super I, Vilà-Guerau de Arellano J, Krol M C. 2015. Cumulative ozone effect on canopy stomatal resistance and the impact on boundary layer dynamics and CO2 assimilation at the diurnal scale: A case study for grassland in the Netherlands [J]. J. Geophys. Res., 120 (7): 1348-1365, doi: 10.1002/2015JG002996.
    [57] Tai A P K, Martin M V, Heald C L. 2014. Threat to future global food security from climate change and ozone air pollution [J]. Nature Climate Change, 4 (9): 817-821, doi: 10.1038/nclimate2317.
    [58] 唐孝炎, 张远航, 邵敏, 等. 2006.大气环境化学(第2版) [M].北京:高等教育出版社, 739.

    Tang Xiaoyan, Zhang Yuanhang, Shao Min, et al. 2006. Atmosphere Environmental Chemistry (2nd ed.) (in Chinese) [M]. Beijing: Higher Education Press, 739.
    [59] The Royal Society. 2008. Ground-Level Ozone in the 21st Century: Future Trends, Impacts and Policy Implications [M]. London: The Royal Society.
    [60] Tian H Q, Ren W, Tao B, et al. 2016. Climate extremes and ozone pollution: A growing threat to China's food security [J]. Ecosystem Health and Sustainability, 2 (1): 1-10, doi: 10.1002/ehs2.1203.
    [61] Tjoelker M G, Luxmoore R J. 1991. Soil nitrogen and chronic ozone stress influence physiology, growth and nutrient status of Pinus taeda L. and Liriodendron tulipifera L. seedlings [J]. New Phytologist, 119 (1): 69-81, doi: 10.1111/j.1469-8137.1991.tb01009.x.
    [62] Tjoelker M G, Volin J C, Oleksyn J, et al. 1995. Interaction of ozone pollution and light effects on photosynthesis in a forest canopy experiment [J]. Plant, Cell and Environment, 18 (8): 895-905, doi: 10.1111/j.1365-3040.1995.tb00598.x.
    [63] Wittig V E, Ainsworth E A, Long S P. 2007. To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments [J]. Plant, Cell and Environment, 30 (9): 1150-1162, doi: 10.1111/j.1365-3040.2007.01717.x.
    [64] Wittig V E, Ainsworth E A, Naidu S L, et al. 2009. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: A quantitative meta-analysis [J]. Global Change Biology, 15 (2): 396-424, doi: 10.1111/j.1365-2486.2008. 01774.x.
    [65] Wu T W, Li W P, Ji J J, et al. 2013. Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century [J]. J. Geophys. Res., 118 (10): 4326-4347, doi: 10.1002/jgrd.50320.
    [66] Yue X, Unger N. 2014. Ozone vegetation damage effects on gross primary productivity in the United States [J]. Atmospheric Chemistry and Physics, 14 (17): 9137-9153, doi: 10.5194/acp-14-9137-2014.
    [67] Yue X, Unger N. 2015. The Yale interactive terrestrial biosphere model version 1.0: Description, evaluation and implementation into NASA GISS ModelE2 [J]. Geoscientific Model Development, 8 (8): 2399-2417, doi: 10.5194/gmd-8-2399-2015.
    [68] Yue X, Keenan T F, Munger W, et al. 2016. Limited effect of ozone reductions on the 20-year photosynthesis trend at Harvard forest [J]. Global Change Biology, 22 (11): 3750-3759, doi: 10.1111/gcb.13300.
    [69] Zeng X D, Li F, Song X. 2014. Development of the IAP dynamic global vegetation model [J]. Adv. Atmos. Sci., 31 (3): 505-514, doi: 10.1007/s00376-013-3155-3.
    [70] Zouzoulas D, Koutroubas S D, Vassiliou G, et al. 2009. Effects of ozone fumigation on cotton (Gossypium hirsutum L.) morphology, anatomy, physiology, yield and qualitative characteristics of fibers [J]. Environmental and Experimental Botany, 67 (1): 293-303, doi: 10.1016/j.envexpbot.2009.05.016.
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  1123
  • HTML全文浏览量:  3
  • PDF下载量:  2167
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-03
  • 网络出版日期:  2017-01-19
  • 刊出日期:  2017-09-20

目录

    /

    返回文章
    返回