The Impact of Land Use/Land Cover Changes under Different Greenhouse Gas Concentrations on Climate in Europe
-
摘要: 通过温室气体排放和土地利用/覆盖变化,人类活动对气候变化产生显著影响。为了探究在不同温室气体浓度(Greenhouse gas concentration,GHG)背景下,相同的土地利用/覆盖变化(Land Use and Land Cover Change,LULCC)对于欧洲区域气候的影响差异,采用CESM(Community Earth System Model)耦合模式进行了模拟研究。研究发现,在1850年温室气体浓度背景下,土地利用/覆盖变化导致欧洲中东部地区降水显著增加,而在2000年温室气体浓度背景下,土地利用/覆盖变化导致欧洲中东部地区降水减少。温室气体增加后,LULCC导致该地区对流层低层大气环流由辐合变为辐散,气温以及大气水汽含量降低,这些变化能较大程度的改变LULCC对区域降水的净影响力。Abstract: Human activities have modified the Earth's climate through emissions of greenhouse gases and land-use and land-cover changes (LULCC). To investigate the impacts of LULCC under different greenhouse gas concentrations (GHG) on regional climate, several numerical experiments are performed using the fully coupled community earth system model (CESM). Results are as follows. Under the concentrations of greenhouse gases around 1850, the LULCC lead to increases in precipitation in central and eastern Europe, while under concentrations of greenhouse gases around 2000, the LULCC lead to decreases in precipitation in central and eastern Europe. Under the increased GHG concentration, LULCC lead to changes in the atmospheric circulation from convergence to divergence and decrease the air temperature and moisture content. These changes play a dominant role in determining the net impact of LULCC on regional precipitation.
-
图 2 在(a)2000年温室气体浓度水平和(b)1850年温室气体浓度水平下土地利用/覆盖变化对暖季(5~9月)降水的影响,以及(c)两者的差异:(a)C2-P2试验;(b)C1-P1试验;(c)C2–P2试验减去C1–P1试验。图中画斜线区域表示变化达到0.05显著性水平
Figure 2. Under greenhouse gas concentration levels of (a) 2000 and (b) 1850 the LULCC-induced changes in precipitation (LULCC, Land Use and Land Cover Change) and (c) their differences in warm season (May-September): (a) Experiment C2–P2 (scheme C2 minus scheme P2); (b) experiment C1–P1 (scheme C1 minus scheme P1); (c) experiment C2–P2 minus experiment C1–P1. The regions with slashes are areas where the changes are significant at 0.05 level
图 3 在(a)2000年温室气体浓度水平和(b)1850年温室气体浓度水平下土地利用/覆盖变化对暖季(5~9月)850 hPa风场的影响,以及(c)两者的差异:(a)C2–P2试验;(b)C1–P1试验;(c)C2–P2试验减去C1–P1试验
Figure 3. Under greenhouse gas concentration levels of (a) 2000 and (b) 1850 the LULCC-induced changes in 850-hPa wind field and (c) their differences in warm season (May-September): (a) Experiment C2–P2; (b) experiment C1–P1; (c) experiment C2–P2 minus experiment C1–P1
图 4 在(a)2000年温室气体浓度水平和(b)1850年温室气体浓度水平下土地利用/覆盖变化对暖季(5~9月) 850 hPa比湿的影响,以及(c)两者的差异:(a)C2–P2试验;(b)C1–P1试验;(c)C2–P2试验减去C1–P1试验。图中画斜线区域表示变化达到0.05显著性水平
Figure 4. Under greenhouse gas concentration levels of (a) 2000 and (b) 1850 the LULCC-induced changes in specific humidity and (c) their differences in warm season (May-September): (a) Experiment C2–P2; (b) experiment C1–P1; (c) experiment C2–P2 minus experiment C1–P1. The regions with slashes are areas where the changes are significant at 0.05 level
图 5 在(a)2000年温室气体浓度水平和(b)1850年温室气体浓度水平下土地利用/覆盖变化对暖季(5~9月)850 hPa气温的影响,以及(c)两者的差异:(a)C2-P2试验;(b)C1-P1试验;(c)C2-P2试验减去C1-P1试验。图中画斜线区域表示变化达到0.05显著性水平
Figure 5. Under greenhouse gas concentration levels of (a) 2000 and (b) 1850 the LULCC-induced changes in 850-hPa air temperature and (c) their differences in warm season (May-September): (a) Experiment C2–P2; (b) experiment C1–P1; (c) experiment C2–P2 minus experiment C1–P1. The regions with slashes are areas where the changes are significant at 0.05 level
图 6 25°E~50°E区域平均暖季(5~9月)土地利用/覆盖变化对风场和气温影响的经向垂直剖面:(a)2000年温室气体浓度水平C2–P2试验、(b)1850年温室气体浓度水平C1–P1试验以及(c)两者的差异(C2–P2试验减去C1–P1试验)。阴影代表气温的变化,斜线表示气温变化达到0.05显著性水平
Figure 6. Longitudinal cross sections of wind field and air temperature averaged over 25°E-50°E under greenhouse gas concentration levels of (a) 2000 and (b) 1850 the LULCC-induced changes and (c) their differences in warm season (May-September): (a) Experiment C2–P2; (b) experiment C1–P1; (c) experiment C2–P2 minus experiment C1–P1. The shaded indicates changes in air temperature, the regions with slashes are areas where the changes in temperature are significant at 0.05 level
图 7 25°E~50°E区域平均暖季(5~9月)土地利用/覆盖变化对比湿影响的经向垂直剖面:(a)2000年温室气体浓度水平C2–P2试验、(b)1850年温室气体浓度水平C1–P1试验以及(c)两者的差异(C2–P2试验减去C1–P1试验)。阴影代表比湿的变化,斜线表示比湿变化达到0.05显著性水平
Figure 7. Longitudinal cross sections of specific humidity averaged over 25°E-50°E under greenhouse gas concentration levels of (a) 2000 and (b) 1850 the LULCC-induced changes and (c) their differences in warm season (May-September): (a) Experiment C2–P2; (b) experiment C1–P1; (c) experiment C2–P2 minus experiment C1–P1. The shaded indicates the changes in specific humidity, the regions with slashes are areas where the changes in specific humidity are significant at 0.05 level
表 1 试验设计介绍
Table 1. Description of experiments
试验方案 试验描述 温室气体设置 土地利用/覆盖设置 P1 1850年温室气体浓度,无土地利用/覆盖变化 1850年浓度水平 潜在植被覆盖 P2 仅考虑温室气体浓度的变化 2000年浓度水平 潜在植被覆盖 C1 仅考虑土地利用/覆盖变化 1850年浓度水平 当前植被覆盖 C2 同时考虑温室气体和土地利用/覆盖变化 2000年浓度水平 当前植被覆盖 表 2 CLM陆面模式中当前植被覆盖相对于潜在植被覆盖的植被功能类型在欧洲地区(0°~50°E,38°N~60°N)的百分比变化
Table 2. Fractional changes of CLM (Community Land Model) plant functional types between current and potential vegetation maps over Europe (0°–50°E, 38°N–60°N)
植被功能类型 百分比变化 裸土 -0.82% 温带常绿针叶林 -11.23% 寒带常绿针叶林 -1.58% 寒带落叶针叶林 0 热带常绿阔叶林 0 温带常绿阔叶林 -0.05% 热带落叶阔叶林 0 温带落叶阔叶林 -15.59% 温带落叶阔叶林 -1.17% 温带常绿灌木 -0.38% 温带落叶灌木 -1.95% 寒带落叶灌木 -0.11% C3极地草 +0.08% C3草 +2.41% C4草 +0.14% 农田 +28.48% -
[1] 曹富强, 丹利, 马柱国. 2015.中国农田下垫面变化对气候影响的模拟研究[J].气象学报, 73 (1):128-141. doi: 10.11676/qxxb2015.001Cao Fuqiang, Dan Li, Ma Zhuguo. 2015. Simulative study of the impact of the cropland change on the regional climate over China[J]. Acta Meteorologica Sinica (in Chinese), 73 (1):128-141, doi: 10.11676/qxxb2015.001. [2] Davin E L, de Noblet-Ducoudré N. 2010. Climatic impact of global-scale deforestation:Radiative versus nonradiative processes[J]. Journal of Climate, 23:97-112. https://doi.org/10.1175/2009JCLI3102.1 doi: 10.1175/2009JCLI3102.1 [3] 符淙斌, 袁慧玲. 2001.恢复自然植被对东亚夏季气候和环境影响的一个虚拟试验[J].科学通报, 46 (8):691-695. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kxtb200108018Fu Congbin, Yuan Huiling. 2001. One virtual test of restoration of natural vegetation affecting the climate and environment in the summer of eastern Asia[J]. Chinese Science Bulletin (in Chinese), 46 (8):691-695. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kxtb200108018 [4] 高学杰, 张冬峰, 陈仲新, 等. 2007.中国当代土地利用对区域气候影响的数值模拟[J].中国科学D辑(地球科学), 37 (3):397-404. doi: 10.1007/s11430-007-2060-yGao Xuejie, Zhang Dongfeng, Chen Zhongxin, et al. 2007. Land use effects on climate in China as simulated by a regional climate model[J]. Science in China Series D (Earth Sciences), 50 (4):620-628, doi: 10.1007/s11430-007-2060-y. [5] Gent P R, Danabasoglu G, Donner L J, et al. 2011. The community climate system model version 4 (CCSM4)[J]. J. Climate, 24:4973-4991, doi: 10.1175/2011JCLI4083.1. [6] Haxeltine A, Prentice I C. 1996. BIOME3:An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types[J]. Global Biogeochemical Cycles, 10 (4):693-709, doi: 10.1029/96GB02344. [7] Held I M, Soden B J. 2006. Robust responses of the hydrological cycle to global warming[J]. J. Climate, 19:5686-5699, doi: 10.1175/JCLI3990.1. [8] 华文剑, 陈海山. 2013.全球变暖背景下土地利用/土地覆盖变化气候效应的新认识[J].科学通报, 58 (27):2832-2839. doi: 10.1007/s11434-013-5902-3Hua Wenjian, Chen Haishan. 2013. Recognition of climatic effects of land use/land cover change under global warming[J]. Chinese Science Bulletin, 58 (31):3852-3858, doi: 10.1007/s11434-013-5902-3. [9] Hurtt G C, Frolking S, Fearon M G, et al. 2006. The underpinnings of land-use history:Three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands[J]. Global Change Biology, 12 (7):1208-1229, doi: 10.1111/j.1365-2486.2006.01150.x. [10] IPCC. 2013. Climate Change 2013:The physical science basis[M]//Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker T F, Qin D, Plattner G K, et al, Eds. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press, 1535 pp. [11] Lawrence D M, Oleson K W, Flanner M G, et al. 2012. The CCSM4 land simulation, 1850-2005:Assessment of surface climate and new capabilities[J]. J. Climate, 25:2240-2260, doi: 10.1175/JCLI-D-11-00103.1. [12] Lawrence P J, Chase T N. 2007. Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0)[J]. J. Geophys. Res., 112:G01023, doi: 10.1029/2006JG000168. [13] Lawrence P J, Chase T N. 2010. Investigating the climate impacts of global land cover change in the community climate system model[J]. International Journal of Climatology, 30 (13):2066-2087, doi: 10.1002/joc.2061. [14] Lindvall J, Svensson G, Hannay C. 2013. Evaluation of near surface parameters in the two versions of the atmospheric model in CESM1 using flux station observations[J]. J Climate, 26 (1):26-44.DOI: 10.1175/JCLI-D-12-00020.1. [15] 毛慧琴, 延晓冬, 熊喆. 2011.土地利用变化对气候影响的研究进展[J].气候与环境研究, 16 (4):513-524. doi: 10.3878/j.issn.1006-9585.2011.04.12Mao Huiqin, Yan Xiaodong, Xiong Zhe. 2011. An overview of impacts of land use change on climate[J]. Climatic and Environmental Research (in Chinese), 16 (4):513-524, doi: 10.3878/j.issn.1006-9585.2011.04.12. [16] Marsh D R, Mills M J, Kinnison D E, et al. 2013. Climate Change from 1850 to 2005 simulated in CESM1 (WACCM)[J]. J. Climate, 26:7372-7391, doi: 10.1175/JCLI-D-12-00558.1. [17] Notaro M, Chen G S, Liu Z Y. 2011. Vegetation feedbacks to climate in the global monsoon regions[J]. J. Climate, 24: 5740-5756, doi: 10.1175/2011JCLI4237.1. [18] Oleson K W, Lawrence D M, Gordon B, et al. 2010. Technical Description of version 4. 0 of the Community Land Model (CLM)[R]. NCAR Technical Note NCAR/TN-478+STR. [19] Pitman A J, de Noblet-Ducoudré N, Cruz F T, et al. 2009. Uncertainties in climate responses to past land cover change:First results from the LUCID intercomparison study[J]. Geophys. Res. Lett., 36:L14814, doi: 10.1029/2009GL039076. [20] Pitman A J, Avila F B, Abramowitz G, et al. 2011. Importance of background climate in determining impact of land-cover change on regional climate[J]. Nature Climate Change, 1 (9):472-475, doi: 10.1038/nclimate1294. [21] Pitman A J, de Noblet-Ducoudré N, Avila F B, et al. 2012. Effects of land cover change on temperature and rainfall extremes in multi-model ensemble simulations[J]. Earth System Dynamics, 3:213-231, doi: 10.5194/esd-3-213-2012. [22] Ramankutty N, Foley J A. 1999. Estimating historical changes in global land cover:Croplands from 1700 to 1992[J]. Global Biogeochemical Cycles, 13 (4):997-1027, doi: 10.1029/1999GB900046. [23] 邵璞, 曾晓东. 2012.土地利用和土地覆盖变化对气候系统影响的研究进展[J].气候与环境研究, 17 (1):103-111. doi: 10.3878/j.issn.1006-9585.2011.10029Shao Pu, Zeng Xiaodong. 2012. Progress in the study of the effects of land use and land cover change on the climate system[J]. Climatic and Environmental Research (in Chinese), 17 (1):103-111, doi: 10.3878/j.issn.1006-9585.2011.10029. [24] Sun G D, Mu M. 2013. Using the Lund-Potsdam-Jena model to understand the different responses of three woody plants to land use in China[J]. Advances in Atmospheric Sciences, 30 (2):515-524, doi: 10.1007/s00376-012-2011-1. [25] 王明娜, 韩哲, 张庆云. 2016. 21世纪初中国北方半干旱区土地利用变化对地表温度的影响[J].气候与环境研究, 21 (1):65-77. doi: 10.3878/j.issn.1006-9585.2015.15197Wang Mingna, Han Zhe, Zhang Qingyun. 2016. Impact of land use and cover change in the semi-arid regions of China on the temperature in the early 21st century[J]. Climatic and Environmental Research (in Chinese), 21 (1):65-77, doi: 10.3878/j.issn.1006-9585.2015.15197. [26] Wohlfahrt J, Harrison S P, Braconnot P. 2004. Synergistic feedbacks between ocean and vegetation on mid-and high-latitude climates during the mid-Holocene[J]. Climate Dyn., 22:223-238, doi: 10.1007/s00382-003-0379-4. [27] Xu Z F, Mahmood R, Yang Z L, et al. 2015. Investigating diurnal and seasonal climatic response to land use and land cover change over monsoon Asia with the community earth system model[J]. J. Geophys. Res.:Atmos., 120:1137-1152, doi: 10.1002/2014JD022479. [28] Zwiers F W, von Storch H. 1995. Taking serial correlation into account in tests of the mean[J]. J. Climate, 8:336-351, doi:10.1175/1520-0442(1995)008<0336:TSCIAI>2.0.CO;2. -