高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于1873年以来器测气温的二十四节气气候变化

钱诚 严中伟 曹丽娟 李珍

钱诚, 严中伟, 曹丽娟, 李珍. 基于1873年以来器测气温的二十四节气气候变化[J]. 气候与环境研究, 2018, 23(6): 670-682. doi: 10.3878/j.issn.1006-9585.2018.18044
引用本文: 钱诚, 严中伟, 曹丽娟, 李珍. 基于1873年以来器测气温的二十四节气气候变化[J]. 气候与环境研究, 2018, 23(6): 670-682. doi: 10.3878/j.issn.1006-9585.2018.18044
Cheng QIAN, Zhongwei YAN, Lijuan CAO, Zhen LI. Climatic Changes in the Twenty-Four Solar Terms Based on Temperature Observations Back to 1873[J]. Climatic and Environmental Research, 2018, 23(6): 670-682. doi: 10.3878/j.issn.1006-9585.2018.18044
Citation: Cheng QIAN, Zhongwei YAN, Lijuan CAO, Zhen LI. Climatic Changes in the Twenty-Four Solar Terms Based on Temperature Observations Back to 1873[J]. Climatic and Environmental Research, 2018, 23(6): 670-682. doi: 10.3878/j.issn.1006-9585.2018.18044

基于1873年以来器测气温的二十四节气气候变化

doi: 10.3878/j.issn.1006-9585.2018.18044
基金项目: 

国家重点研发计划项目 2016YFA0600404

国家重点研发计划项目 2017YFC1501801

国家自然科学基金面上项目 41675093

中国科学院国际合作局项目 134111KYSB20160010

中国科学院青年创新促进会 2016075

详细信息
    作者简介:

    钱诚, 男, 1980年出生, 博士, 研究员, 主要从事气候变化检测归因和预测研究。E-mail:qianch@tea.ac.cn

  • 中图分类号: P467

Climatic Changes in the Twenty-Four Solar Terms Based on Temperature Observations Back to 1873

Funds: 

National Key Research and Development Program of China 2016YFA0600404

National Key Research and Development Program of China 2017YFC1501801

National Natural Science Foundation of China 41675093

Bureau of International Co-operation Chinese Academy of Sciences 134111KYSB20160010

the Youth Innovation Promotion Association of Chinese Academy of Sciences 2016075

  • 摘要: 2000多年来二十四节气已广泛用于指导人们生产和生活。然而传统二十四节气的应用意义在当前全球变暖背景下正在发生变化。气候学二十四节气的提出赋予了二十四节气动态变化的内涵,有利于更好地发挥其现实指导作用。本文利用北京观象台1940~2017年和上海徐家汇站1873~2017年均一化的逐日气温观测序列,分析了近百余年二十四节气气候变化特征。结果显示,北京1941~2016年和上海1874~2016年的年平均气温和二十四节气气温都呈现变暖趋势,导致早春到初夏阶段的气候学节气呈现提前的趋势,而夏末到初冬阶段的节气呈现推迟的趋势;这些趋势大部分是统计显著的。北京和上海的极端冷事件(以大寒标准定义)均呈现显著的减少趋势,上海的极端热事件(以大暑标准定义)呈现显著的增多趋势。除了长期趋势之外,上海极端热事件频数和夏季平均气温演变中都存在明显的60~80年周期的多年代际变率,和大西洋多年代际振荡相关。相比以往基于1960年以来的观测所做的二十四节气气候趋势分析,本文揭示了更完善的长期气候变化特征,有助于从精细化的季节循环演变角度丰富关于近代中国气候变暖的认识,为适应气候变化提供科学基础。
  • 图  1  拼接后的(a)北京和(b)上海百年逐日平均气温序列计算的年平均值及其和相关数据的比较。黑色为拼接后数据;绿色为数据1,其中(b)调整了一个偏差;红色为数据2(a)和数据3(b)的近60年数据;蓝色为数据4,其中(b)调整了一个偏差

    Figure  1.  Time series of annual mean temperature calculated from the connected daily mean temperature data (black lines) at (a) Beijing and (b) Shanghai stations and the comparisons with related data, including data from Yan et al. (2001) (green lines, with an adjust in the lower figure), Li et al. (2015) (a) and Cao et al. (2016) (b) (red lines), and Cao et al. (2013) (blue lines, with an adjust in the lower figure)

    图  2  北京1941~2016年(蓝色)和上海1874~2016年(红色)的年平均气温距平序列(实线)及其线性趋势(虚线)。天蓝色和紫色分别是北京和上海各自的最长序列

    Figure  2.  Time series of annual mean temperature anomalies at Beijing station during 1941-2016 (blue solid line) and Shanghai station during 1874-2016 (red solid lines), and their corresponding linear trends (dashed lines). Cyan and magenta lines are the longest series for Beijing and Shanghai stations, respectivelys

    图  3  (a、b)北京1941~2016年和(c、d)上海1874~2016年的气候学二十四节气提前或推迟的演变(左列:季节性升温时段;右列:季节性降温时段)。实线表示各个气候节气每年的时间序号,虚线表示线性趋势。其中,上海的气候学雨水、处暑和大雪[见Qian et al.(2016)表 1]有的年份没有达到阈值,设为缺测

    Figure  3.  Linear trends (dashed lines) in the timing (solid lines) of the Solar Terms in the seasonal warming period (left panel) and the seasonal cooling period (right panel) at (a, b) Beijing station during 1941-2016 and (c, d) Shanghai station during 1874-2016. There are years in which no intersects with the thresholds are found for three timings, including Rain Water, Limit of Heat, and Great Snow [see the Table 1 in Qian et al. (2016) for the explanations] in Fig. 3c and Fig. 3d. They are considered as missing values

    图  4  (a、b)北京1941~2016年和(c、d)上海1874~2016年达到大寒标准(左列)和达到大暑标准(右列)的频数演变(蓝实线)、相应的线性趋势(蓝虚线)、EEMD趋势(黑实线)和EEMD多年代际以上尺度低频变率(红实线,只分析上海)

    Figure  4.  Time series (blue solid lines) of the occurrence of extreme cold day (left column) and extreme hot day (right column) at (a, b) Beijing station for the period 1941-2016 and (c, d) Shanghai station for the period 1874-2016, and their corresponding linear trends (dashed lines), EEMD trends (black lines) and low-frequency variations with a period equal to or longer than multi-decadal timescale calculated from EEMD filter (red lines and only Shanghai is analyzed)

    图  5  (a、b)北京1941~2016年和(c、d)上海1874~2016年达到大寒和大暑标准的极端冷(左列)、暖(右列)日发生频次和冬季、夏季平均气温的关系

    Figure  5.  Relationships between the occurrence of extreme cold days and winter temperature (left column) or between the occurrence of extreme hot days and summer temperature (right column) at Beijing station for the period 1941-2016 (upper) and Shanghai station for the period 1874-2016 (lower)

    图  6  北京1941~2016年(蓝色)和上海1874~2016年(红实线)夏季平均气温距平序列以及上海相应的线性趋势(红虚线)、EEMD趋势(黑实线)、EEMD多年代际以上尺度低频变率(紫色)

    Figure  6.  Time series of summer temperature anomaly at Beijing station during 1941-2016 (blue line) and Shanghai station during 1874-2016 (red solid line). Along with the linear trend (red dashed line), EEMD trend (black solid line), and low-frequency variations with a period equal to or longer than multi-decadal timescale calculated from EEMD filter (magenta line) for Shanghai station

    图  7  上海1880~2016年夏季平均气温的多年代际变率和全球海表温度场的相关系数分布

    Figure  7.  Correlation coefficients between multi-decadal variability in summer temperature at Shanghai station and global gridded sea surface temperature during 1880-2016

    表  1  北京(1941~2016年)和上海(1874~2016年)的二十四节气气候变化趋势

    Table  1.   Linear trends in climatic changes of the Solar Terms at Beijing station (1941-2016) and Shanghai station (1874-2016)

    节气 时间 阈值/℃ 增温趋势/℃(10a)-1 提前趋势/d(10a)-1
    北京 上海 北京 上海 北京 上海
    立春 2月3~5日 -3.03 4.48 0.37** 0.12**
    雨水 2月18~20日 -0.65 5.74 0.41** 0.13** 2.44**
    惊蛰 3月5~7日 2.71 7.63 0.40** 0.13** 1.65** 0.99**
    春分 3月20~21日 6.57 9.93 0.23** 0.08** 1.27** 0.74**
    清明 4月4~6日 10.91 12.69 0.28** 0.11** 1.06** 0.64**
    谷雨 4月19~21曰 14.86 15.41 0.22** 0.11** 0.97** 0.64**
    立夏 5月5~7日 18.49 18.15 0.18** 0.10** 0.93** 0.62**
    小满 5月20~22日 21.23 20.53 0.14* 0.08** 0.94* 0.57**
    芒种 6月5~7日 23.4 22.83 0.1 0.07** 1 0.48**
    夏至 6月21~22日 25.07 25.18 0.04 0.04** 0.95 0.45**
    小暑 7月6~8日 26.17 27.4 0.05 0.07**
    大暑 7月22~24日 26.42 28.75 0.09 0.07**
    立秋 8月7~9日 25.71 28.85 0.14** 0.07**
    处暑 8月22~24日 24.14 27.77 0.18** 0.07** -1.30**
    白露 9月7~9日 21.6 25.66 0.20** 0.08** —0.94** -0.54**
    秋分 9月22~24日 18.55 23.17 0.18** 0.10** —0.70** -0.61**
    寒露 10月8~9日 14.87 20.37 0.10* 0.09** -0.56* -0.72**
    霜降 10月23~24日 10.92 17.48 0.09* 0.10** -0.43 -0.72**
    立冬 11月7~8日 6.81 14.36 0.09* 0.10** -0.42 -0.70**
    小雪 11月22~23日 2.88 11.14 0.12** 0.09** -0.58* -0.64**
    大雪 12月6~8日 -0.37 8.26 0.23** 0.12** -1.14**
    冬至 12月21~23日 -2.80 5.93 0.27** 0.10**
    小寒 1月5~7日 -4.16 4.44 0.28** 0.10**
    大寒 1月20~21日 -4.19 4.03 0.21** 0.07**
    注:趋势只列出最佳估计值,略去置信区间;“提前趋势”中符号为正表示提前,负表示推迟。* (**)表示线性趋势在0.05 (0.01)水平下统计显著。
    下载: 导出CSV

    表  2  不同年代北京和上海达到大寒、大暑标准的频数均值

    Table  2.   Decadal mean occurrences of extreme cold days and extreme hot days

    d
    年代 大寒日数 大暑日数
    北京 上海 北京 上海
    1880年代 42.4 30.6
    1890年代 37.2 29.3
    1900年代 35.5 20.1
    1910年代 34.5 24.5
    1920年代 36.8 28.9
    1930年代 35.5 38.2
    1940年代 35 27.6 41.5 40.4
    1950年代 31 34.4 26.1 32.5
    1960年代 34.5 40.4 37.3 36.4
    1970年代 28.6 35.9 26.6 30.1
    1980年代 27.2 31.9 29.9 28.6
    1990年代 12.3 20.6 38.2 38.1
    2000年代 17.5 21.8 46.4 45.1
    下载: 导出CSV
  • [1] An S I, Choi J. 2009. Seasonal locking of the ENSO asymmetry and its influence on the seasonal cycle of the tropical eastern Pacific sea surface temperature[J]. Atmospheric Research, 94:3-9, doi:10.1016/j.atmosres. 2008.09.029.
    [2] Cao L J, Zhao P, Yan Z W, et al. 2013. Instrumental temperature series in eastern and central China back to the nineteenth century[J]. J. Geophys. Res., 118:8197-8207, doi: 10.1002/jgrd.50615.
    [3] Cao L J, Zhu Y N, Tang G L, et al. 2016. Climatic warming in China according to a homogenized data set from 2419 stations[J]. International Journal of Climatology, 36:4384-4392, doi: 10.1002/joc.4639.
    [4] Cao L J, Yan Z W, Zhao P, et al. 2017. Climatic warming in China during 1901-2015 based on an extended dataset of instrumental temperature records[J]. Environmental Research Letters, 12:064005, doi: 10.1088/1748-9326/aa68e8.
    [5] 陈红梅, 张耀存, 何凤翩. 2005.上海气温与太平洋海温的相关关系及年代际差异[J].南京气象学院学报, 28:778-786. doi: 10.3969/j.issn.1674-7097.2005.06.008

    Chen Hongmei, Zhang Yaocun, He Fengpian. 2005. Correlations between temperature in Shanghai and Pacific SST and their interdecadal variations[J]. Journal of Nanjing Institute of Meteorology (in Chinese), 28:778-786, doi: 10.3969/j.issn.1674-7097.2005.06.008.
    [6] Hartmann D L, Klein Tank A M G, Rusticucci M, et al. 2013. Observations: Atmosphere and Surface Supplementary Material. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535pp.
    [7] Huang B Y, Thorne P W, Banzon V F, et al. 2017. Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5), Upgrades, validations, and intercomparisons[J]. Journal of Climate, 30:8179-8205, doi: 10.1175/JCLI-D-16-0836.1.
    [8] Huang N E, Shen Z, Long S R, et al. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 454:903-995, doi: 10.1098/rspa.1998.0193.
    [9] Huang N E, Wu Z H. 2008. A review on Hilbert-Huang transform:Method and its applications to geophysical studies[J]. Rev. Geophys., 46:RG2006, doi: 10.1029/2007RG000228.
    [10] 江志红, 丁裕国. 1999.近百年上海气候变暖过程的再认识——平均温度与最低、最高温度的对比[J].应用气象学报, 10:151-159. doi: 10.3969/j.issn.1001-7313.1999.02.003

    Jiang Zhihong, Ding Yuguo. 1999. Renewed study on the warming process of Shanghai during the past 100 years[J]. Quarterly Journal of Applied Meteorology (in Chinese), 10:151-159, doi:10.3969/j.issn.1001-7313. 1999.02.003.
    [11] 雷秋良, 徐建文, 姜帅, 等. 2014.气候变化对中国主要作物生育期的影响研究进展[J].中国农学通报, 30:205-209. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201411038

    Lei Qiuliang, Xu Jianwen, Jiang Shuai, et al. 2014. The knowledge of climate change impacts on growth durations of major crops in China[J]. Chinese Agricultural Science Bulletin (in Chinese), 30:205-209. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201411038
    [12] Li Z, Cao L J, Zhu Y N, et al. 2016. Comparison of two homogenized datasets of daily maximum/mean/minimum temperature in China during 1960-2013[J]. J. Meteor. Res., 30:53-66, doi: 10.1007/s13351-016-5054-x.
    [13] 梁萍, 陈葆德. 2015.近139年中国东南部站点气温变化的多尺度特征[J].高原气象, 34:1323-1329. doi: 10.7522/j.issn.1000-0534.2014.00058

    Liang Ping, Chen Baode. 2015. Multiscale features of climate change for temperature of centurial weather stations over southeast China during latest 139 years[J]. Plateau Meteorology (in Chinese), 34:1323-1329, doi: 10.7522/j.issn.1000-0534.2014.00058.
    [14] 刘娟, 杨沈斌, 王主玉, 等. 2010.长江中下游水稻生长季极端高温和低温事件的演变趋势[J].安徽农业科学, 38:13881-13884, 13901. doi: 10.3969/j.issn.0517-6611.2010.25.128

    Liu Juan, Yang Shenbin, Wang Zhuyu, et al. 2010. Evolution trend of extreme high and low temperature events during rice growing period in the middle and lower reaches of the Yangtze River[J]. Journal of Anhui Agricultural Sciences (in Chinese), 38:13881-13884, 13901, doi: 10.3969/j.issn.0517-6611.2010.25.128.
    [15] Lu R Y, Dong B W, Ding H. 2006. Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon[J]. Geophys. Res. Lett., 33:L24701, doi: 10.1029/2006GL027655.
    [16] 穆海振, 孔春燕, 汤绪, 等. 2008.上海气温变化及城市化影响初步分析[J].热带气象学报, 24:672-678. doi: 10.3969/j.issn.1004-4965.2008.06.012

    Mu Haizhen, Kong Chunyan, Tang Xu, et al. 2008. Preliminary analysis of temperature change in Shanghai and urbanization impacts[J]. Journal of Tropical Meteorology (in Chinese), 24:672-678, doi: 10.3969/j.issn.1004-4965.2008.06.012.
    [17] Qian C. 2016a. Disentangling the urbanization effect, multi-decadal variability, and secular trend in temperature in eastern China during 1909-2010[J]. Atmospheric Science Letters, 17:177-182, doi: 10.1002/asl.640.
    [18] Qian C. 2016b. On trend estimation and significance testing for non-Gaussian and serially dependent data:Quantifying the urbanization effect on trends in hot extremes in the megacity of Shanghai[J]. Climate Dyn., 47:329-344, doi: 10.1007/s00382-015-2838-0.
    [19] Qian C, Fu C B, Wu Z H, et al. 2009. On the secular change of spring onset at Stockholm[J]. Geophys. Res. Lett., 36:L12706, doi: 10.1029/2009GL038617.
    [20] Qian C, Fu C B, Wu Z H, et al. 2011a. The role of changes in the annual cycle in earlier onset of climatic spring in northern China[J]. Advances in Atmospheric Sciences, 28:284-296, doi: 10.1007/s00376-010-9221-1.
    [21] Qian C, Ren G Y, Zhou Y Q. 2016. Urbanization effects on climatic changes in 24 particular timings of the seasonal cycle in the middle and lower reaches of the Yellow River[J]. Theor. Appl. Climatol., 124:781-791, doi: 10.1007/s00704-015-1446-6.
    [22] Qian C, Wu Z H, Fu C B, et al. 2010. On multi-timescale variability of temperature in China in modulated annual cycle reference frame[J]. Advances in Atmospheric Sciences, 27:1169-1182, doi: 10.1007/s00376-009-9121-4.
    [23] 钱诚, 严中伟, 符淙斌. 2011. 1960~2008年中国二十四节气气候变化[J].科学通报, 56:3011-3020. http://www.cqvip.com/qk/94252X/201135/40268974.html
    [24] Qian Cheng, Yan Zhongwei, Fu Congbin. 2012. Climatic changes in the Twenty-four Solar Terms during 1960-2008[J]. Chinese Science Bulletin, 57:276-286. doi: 10.1007/s11434-011-4724-4
    [25] Qian C, Yan Z W, Wu Z H, et al. 2011b. Trends in temperature extremes in association with weather-intraseasonal fluctuations in eastern China[J]. Advances in Atmospheric Sciences, 28:297-309, doi: 10.1007/s00376-010-9242-9.
    [26] 史军, 崔林丽, 田展, 等. 2011.上海百余年来气温日间波动特征及城市化影响[J].资源科学, 33:989-994. http://d.old.wanfangdata.com.cn/Periodical/zykx201105026

    Shi Jun, Cui Linli, Tian Zhan, et al. 2011. Two-day fluctuations of temperature and the impacts of urbanization in Shanghai during the period 1873-2009[J]. Resources Science (in Chinese), 33:989-994. http://d.old.wanfangdata.com.cn/Periodical/zykx201105026
    [27] Szentimrey T. 1999. Multiple analysis of series for homogenization (MASH)[C]//Proceeding of the 2nd Seminar for Homogenization of Surface Climatological Data. Geneva: WMO, 27-46.
    [28] Tao F L, Zhang S, Zhang Z. 2012. Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics[J]. European Journal of Agronomy, 43:201-212, doi: 10.1016/j.eja.2012.07.005.
    [29] 王焕炯, 戴君虎, 葛全胜. 2012. 1952~2007年中国白蜡树春季物候时空变化分析[J].中国科学:地球科学, 42:701-710. doi: 10.1007/s11430-011-4349-0

    Wang Huanjiong, Dai Junhu, Ge Quansheng. 2012. The spatiotemporal characteristics of spring phenophase changes of Fraxinus chinensis in China from 1952 to 2007[J]. Science China Earth Sciences, 55:991-1000, doi: 10.1007/s11430-011-4349-0.
    [30] Wang X L, Feng Y. 2010. RHtestsV3 User Manual[R]. Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada, 27pp.
    [31] Wang Y M, Li S L, Luo D H. 2009. Seasonal response of Asian monsoonal climate to the Atlantic multidecadal oscillation[J]. J. Geophys. Res., 114:D02112, doi: 10.1029/2008JD010929.
    [32] Wu Z H, Huang N E. 2009. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 1:1-41, doi: 10.1142/S1793536909000047.
    [33] Xia J J, Tu K, Yan Z W, et al. 2016. The super-heat wave in eastern China during July-August 2013:A perspective of climate change[J]. International Journal of Climatology, 36:1291-1298, doi: 10.1002/joc.4424.
    [34] Xiao D P, Tao F L, Liu Y J, et al. 2013. Observed changes in winter wheat phenology in the North China Plain for 1981-2009[J]. International Journal of Biometeorology, 57:275-285, doi: 10.1007/s00484-012-0552-8.
    [35] 徐家良. 1993.近百余年上海气温变化的若干特征[J].地理学报, 48:26-32. doi: 10.11821/xb199301004

    Xu Jialiang. 1993. Some features of temperature variations in Shanghai for the 118 year period[J]. Acta Geographica Sinica (in Chinese), 48:26-32, doi: 10.11821/xb199301004.
    [36] Yan Z W, Yang C, Jones P. 2001. Influence of inhomogeneity on the estimation of mean and extreme temperature trends in Beijing and Shanghai[J]. Advances in Atmospheric Sciences, 18:309-322, doi: 10.1007/BF02919312.
    [37] 严中伟, 李珍, 夏江江. 2014.气候序列的均一化——定量评估气候变化的基础[J].中国科学:地球科学, 44:2101-2111. doi: 10.1007/s11430-014-4945-x

    Yan Zhongwei, Li Zhen, Xia Jiangjiang. 2014. Homogenization of climate series:The basis for assessing climate changes[J]. Science China Earth Sciences, 57:2891-2900, doi: 10.1007/s11430-014-4945-x.
    [38] 周伟东, 朱洁华, 梁萍. 2010.近134年上海冬季气温变化特征及其可能成因[J].热带气象学报, 26:211-217. doi: 10.3969/j.issn.1004-4965.2010.02.011

    Zhou Weidong, Zhu Jiehua, Liang Ping. 2010. Characteristics of winter temperature variation in Shanghai during 1873-2006 and their probable causes[J]. Journal of Tropical Meteorology (in Chinese), 26:211-217, doi:10.3969/j.issn. 1004-4965.2010.02.011.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1365
  • HTML全文浏览量:  43
  • PDF下载量:  1332
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-16
  • 网络出版日期:  2018-05-28
  • 刊出日期:  2018-11-20

目录

    /

    返回文章
    返回