Analysis of Multi-time Scale Variation Characteristics and Climate Regulation Factors on Global Marine Heatwaves
-
摘要: 基于1982~2019年美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration, NOAA)日最优插值海表温度(Daily Optimum Interpolation Sea Surface Temperature V2, OISST)观测资料和物理实验室(Physical Sciences Laboratory, PSL)多种气候观测指数,采用最小二乘回归、高低通滤波和相关分析等统计方法,分析了全球海洋热浪(Marine Heatwaves, MHWs)频次、持续时间、总天数和最大强度的多时间尺度演变特征及不同气候信号对其演变的调控。研究表明,MHWs频次在赤道西太平洋线性增长最快。在去除全球变暖趋势后,全球平均MHWs各属性年际和年代际变化均存在明显区域变化特征,主导区域也均受到多时间尺度气候信号的调制。本研究分析了5个关键海域(赤道中东太平洋、东北太平洋、西印度洋、西北大西洋、中高纬南大洋)MHWs频次等变化特征与不同气候信号的相关性,结果表明5个关键海域MHWs频次主要受年际气候信号调制。而年代际气候信号主要提供了一个背景状态,其对关键区域MHWs频次演变的影响没有年际气候信号对其演变的显著。Abstract: Based on National Oceanic and Atmospheric Administration (NOAA) Daily Optimum Interpolation Sea Surface Temperature V2 (OISST) observation data and various Physical Sciences Laboratory climate observation indexes from 1982 to 2019, statistical methods such as least square regression, high-low pass filtering, and correlation analysis were adopted to analyze the multi-timescale evolution characteristics of the global Marine Heatwaves (MHWs) frequency, duration, total days, and maximum intensity and the regulation effect of different climate signals on its evolution. Research shows that the MHW frequency linearly grows the fastest in the equatorial western Pacific. After removing the global warming trend, the interannual and interdecadal changes in the global mean MHWs have obvious regional variation characteristics, and all the dominant regions are modulated by the climate signals of multiple timescales. This study analyzes the correlation between the MHW properties and different climate signals in five key sea areas (equatorial central and eastern Pacific Ocean, northeast Pacific Ocean, western Indian Ocean, northwest Atlantic Ocean, and mid-high latitude Southern Ocean). Results show that the frequency of the MHWs in the five key sea areas is mainly modulated by interannual climate signals. The interdecadal climate signal mainly provides a background state, and its influence on the frequency evolution of MHWs in the key areas is not as significant as that of the interannual climate signal.
-
Key words:
- Marine Heatwaves /
- Linear trend /
- Time scale analysis /
- Climate factor
-
图 5 1982~2019全球平均MHWs频次(第一行)、持续时间(第二行)、总天数(第三行)和最大强度(第四行)的(a−d)时间序列和长期趋势、(e−h)年代际变化、(i−l)年际变化
Figure 5. Global mean MHWs frequency (row 1), duration (row 2), total days (row 3), and max intensity (row 4) from 1982 to 2019: (a–d) Time series and long-term trend; (e–h) decadal change; (i–l) interannual change
图 6 1982~2019年MHWs各属性年际时间序列回归到各自空间场:(a)频次;(b)持续时间;(c)总天数;(d)最大强度。打点区表示通过 99%信度检验
Figure 6. Interannual time series of MHWs properties from 1982 to 2019 regressed onto their respective space fields: (a) Frequency; (b) duration; (c) total days; (d) max intensity. The dotted areas indicate passing the 99% confidence test
图 7 1982~2019年MHWs各属性年代际时间序列回归到各自空间场:(a)频次;(b)持续时间;(c)总天数;(d)最大强度。打点区表示通过 99%信度检验
Figure 7. Decadal time series of MHWs properties from 1982 to 2019 regressed onto their respective space fields: (a) Frequency; (b) duration; (c) total days; (d) max intensity. The dotted areas indicate passing the 99% confidence test
图 8 1982~2019年MHWs频次与(a)ENSO指数、(b)DMI、(c)NAO指数、(d)VM指数、(e)SAM指数、(f)ATLN1指数、(g)NPGO指数、(h)PDO指数、(i)AMO指数的相关系数。打点区表示通过 99%信度检验
Figure 8. Distributions of the correlation coefficients between the MHW frequency field and (a) ENSO index, (b) DMI, (c) NAO index, (d) VM index, (e) SAM index, (f) ATLN1 index, (g) NPGO index, (h) PDO index, and (i) AMO index from 1982 to 2019. The dotted areas indicate passing the 99% confidence test
图 9 1982~2019年关键海域区域平均MHWs频次的原始时间序列(黑线)、线性趋势(红色虚线)、年际时间序列(紫线)与各气候指数(蓝线):(a)赤道中东太平洋;(b)东北太平洋;(c)西北大西洋;(d)西印度洋;(e)中高纬南大洋。r1和r2分别为频次的原始时间序列和年际时间序列与对应年际气候指数的相关系数
Figure 9. Original time series (black line), linear trend (red dotted line), interannual time series (purple line), and interannual climate index (blue line) of the mean MHWs frequency in key sea areas from 1982 to 2019: (a) Equatorial middle-eastern Pacific Ocean (EP); (b) northeastern Pacific Ocean; (c) northwestern Atlantic Ocean; (d) western Indian Ocean; (e) middle−high latitude Southern Ocean. r1 and r2 are the correlation coefficients between the original and interannual time series of the frequency and corresponding interannual climate index, respectively
表 1 多时间尺度气候指数
Table 1. Multi-time scale climate index
气候指数 简称 时间尺度 厄尔尼诺—南方涛动指数 ENSO 年际 印度洋偶极子指数 DMI 年际 北大西洋涛动指数 NAO (North Atlantic Oscillation) 年际 维多利亚模态指数 VM (Victoria Mode) 年际 南半球环状模指数 SAM (Southern Annular Mode) 年际 大西洋厄尔尼诺指数 ATLN1 年际 太平洋环流振荡指数 NPGO (North Pacific Gyre Oscillation) 年代际 太平洋年代际振荡指数 PDO 年代际 大西洋多年代际振荡指数 AMO 年代际 表 2 海洋热浪(Marine Heatwaves, MHWs)属性的定义
Table 2. Definition of Marine Heatwaves (MHWs) properties
名称 定义 单位 阈值 基于1983~2012年日SST的第90百分位数(记为T90),为阈值。 ℃ 起始时间 Td≥T90d且Td-1<T90d的这一天,即热浪开始的日期,记为ts。 结束时间 Td<T90d且Td-1≥T90d的这一天,即热浪结束的日期,记为te。 爆发频次 从ts开始到te结束记为一次热浪,每年发生的热浪次数之和即为爆发频次。 持续时间 ts−te的天数即为一次热浪的持续时间,对每年发生的MHW持续时间求平均,为年持续时间。 d 总天数 爆发频次乘以年平均持续时间即为热浪日的和,定义为年总天数。 d 最大强度 imax = max(Td− Tmd),对每年的最大强度求平均,为年最大强度。 ℃ 注:Td为日SST;T90d为SST的第90百分位数;Tmd为1983~2012年平均日SST。 -
[1] Amaya D J, Miller A J, Xie S P, et al. 2020. Physical drivers of the summer 2019 North Pacific marine heatwave [J]. Nature Communications, 11(1): 1903. doi: 10.1038/S41467-020-15820-W [2] Battisti D S, Bhatt U S, Alexander M A. 1995. A modeling study of the interannual variability in the wintertime North Atlantic Ocean [J]. J. Climate, 8(12): 3067−3083. doi:10.1175/1520-0442(1995)008<3067:AMSOTI>2.0.CO;2 [3] Benthuysen J A, Oliver E C J, Feng M, et al. 2018. Extreme marine warming across tropical Australia during austral summer 2015−2016 [J]. J. Geophys. Res., 123(2): 1301−1326. doi: 10.1002/2017JC013326 [4] Bond N A, Cronin M F, Freeland H, et al. 2015. Causes and impacts of the 2014 warm anomaly in the NE Pacific [J]. Geophys. Res. Lett., 42(9): 3414−3420. doi: 10.1002/2015GL063306 [5] Cheung W W L, Frölicher T L. 2020. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific [J]. Scientific Reports, 10(1): 6678. doi: 10.1038/S41598-020-63650-Z [6] Dalton S J, Carroll A G, Sampayo E, et al. 2020. Successive marine heatwaves cause disproportionate coral bleaching during a fast phase transition from El Niño to La Niña [J]. Science of the Total Environment, 715: 136951. doi: 10.1016/j.scitotenv.2020.136951 [7] Di Lorenzo E, Schneider N, Cobb K M, et al. 2008. North Pacific Gyre Oscillation links ocean climate and ecosystem change [J]. Geophys. Res. Lett., 35(8): L08607. doi: 10.1029/2007GL032838 [8] Di Lorenzo E, Mantua N. 2016. Multi-year persistence of the 2014/15 North Pacific marine heatwave [J]. Nature Climate Change, 6(11): 1042−1047. doi: 10.1038/nclimate3082 [9] Ding R Q, Li J P, Tseng Y H, et al. 2015. The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO [J]. J. Geophys. Res., 120(1): 27−45. doi: 10.1002/2014JD022221 [10] Ding T, Yuan Y, Zhang J M, et al. 2019. 2018: The hottest summer in China and possible causes [J]. Journal of Meteorological Research, 33(4): 577−592. doi: 10.1007/s13351-019-8178-y [11] Frölicher T L, Fischer E M, Gruber N. 2018. Marine heatwaves under global warming [J]. Nature, 560(7718): 360−364. doi: 10.1038/s41586-018-0383-9 [12] Frölicher T L, Laufkötter C. 2018. Emerging risks from marine heat waves [J]. Nature Communications, 9(1): 650. doi: 10.1038/s41467-018-03163-6 [13] Garrabou J, Coma R, Bensoussan N, et al. 2009. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave [J]. Global Change Biology, 15(5): 1090−1103. doi: 10.1111/j.1365-2486.2008.01823.x [14] Gupta A S, Thomsen M, Benthuysen J A, et al. 2020. Drivers and impacts of the most extreme marine heatwave events [J]. Scientific Reports, 10(1): 19359. doi: 10.1038/s41598-020-75445-3 [15] Hobday A J, Alexander L V, Perkins S E, et al. 2016. A hierarchical approach to defining marine heatwaves [J]. Progress in Oceanography, 141: 227−238. doi: 10.1016/j.pocean.2015.12.014 [16] Holbrook N J, Scannell H A, Gupta A S, et al. 2019. A global assessment of marine heatwaves and their drivers [J]. Nature Communications, 10(1): 2624. doi: 10.1038/s41467-019-10206-z [17] Huang D Q, Qian Y F, Zhu J. 2010. Trends of temperature extremes in China and their relationship with global temperature anomalies [J]. Adv. Atmos. Sci., 27(4): 937−946. doi: 10.1007/s00376-009-9085-4 [18] Hurrell J W, Deser C. 2010. North Atlantic climate variability: The role of the North Atlantic Oscillation [J]. J. Mar. Syst., 79(3−4): 231−244. doi: 10.1016/j.jmarsys.2009.11.002 [19] 蒋薇, 孙国武, 陈伯民, 等. 2011. 江苏省汛期强降水过程的延伸期预报试验 [J]. 气象科学, 31(S1): 24−30. doi: 10.3969/j.issn.1009-0827.2011.z1.004Jiang Wei, Sun Guowu, Chen Bomin, et al. 2011. A rang-extended forecast experiment for severe rainstorm process of Jiangsu in flood season [J]. J. Meteor. Sci. (in Chinese), 31(S1): 24−30. doi: 10.3969/j.issn.1009-0827.2011.z1.004 [20] Laufkötter C, Zscheischler J, Frölicher T L. 2020. High-impact marine heatwaves attributable to human-induced global warming [J]. Science, 369(6511): 1621−1625. doi: 10.1126/SCIENCE.ABA0690 [21] Lutz K, Rathmann J, Jacobeit J. 2013. Classification of warm and cold water events in the eastern tropical Atlantic Ocean [J]. Atmospheric Science Letters, 14(2): 102−106. doi: 10.1002/asl2.424 [22] 缪予晴, 徐海明, 刘佳伟. 2020. 西北太平洋夏季海洋热浪的变化特征及海气关系 [J]. 热带海洋学报, 40(1): 31−43. doi: 10.11978/2020016Miao Yuqing, Xu Haiming, Liu Jiawei. 2020. Variation of summer marine heat waves in the Northwest Pacific and associated air–sea interaction [J]. Journal of Tropical Oceanography (in Chinese), 40(1): 31−43. doi: 10.11978/2020016 [23] Olita A, Sorgente R, Natale S, et al. 2007. Effects of the 2003 European heatwave on the Central Mediterranean Sea: Surface fluxes and the dynamical response [J]. Ocean Science, 3(2): 273−289. doi: 10.5194/os-3-273-2007 [24] Oliver E C J, Benthuysen J A, Bindoff N L, et al. 2017. The unprecedented 2015/16 Tasman Sea marine heatwave [J]. Nature Communications, 8(1): 16101. doi: 10.1038/ncomms16101 [25] Oliver E C J, Donat M G, Burrows M T, et al. 2018. Longer and more frequent marine heatwaves over the past century [J]. Nature Communications, 9(1): 1324. doi: 10.1038/s41467-018-03732-9 [26] Pearce A F, Feng M. 2013. The rise and fall of the "marine heat wave" off Western Australia during the summer of 2010/2011 [J]. J. Mar. Syst. , 111–112: 139–156. doi: 10.1016/j.jmarsys.2012.10.009 [27] Piatt J F, Parrish J K, Renner H M, et al. 2020. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014−2016 [J]. PLoS One, 15(1): e0226087. doi: 10.1371/journal.pone.0226087 [28] Ren H L, Jin F F. 2011. Niño indices for two types of ENSO [J]. Geophys. Res. Lett., 38(4): L04704. doi: 10.1029/2010GL046031 [29] Reynolds R W, Smith T M, Liu C Y, et al. 2007. Daily high-resolution-blended analyses for sea surface temperature [J]. J. Climate, 20(22): 5473−5496. doi: 10.1175/2007JCLI1824.1 [30] Scannell H A, Pershing A J, Alexander M A, et al. 2016. Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950 [J]. Geophys. Res. Lett., 43(5): 2069−2076. doi: 10.1002/2015GL067308 [31] Schlegel R W, Oliver E C J, Perkins-Kirkpatrick S, et al. 2017. Predominant atmospheric and oceanic patterns during coastal marine heatwaves [J]. Frontiers in Marine Science, 4: 323. doi: 10.3389/FMARS.2017.00323 [32] Shanks J K. 1967. Recursion filters for digital processing [J]. Geophysics, 32(1): 33−51. doi: 10.1190/1.1439855 [33] Sparnocchia S, Schiano M E, Picco P, et al. 2006. The anomalous warming of summer 2003 in the surface layer of the Central Ligurian Sea (Western Mediterranean) [J]. Annales Geophysicae, 24(2): 443−452. doi: 10.5194/angeo-24-443-2006 [34] Varela R, Rodríguez-Díaz L, de Castro M, et al. 2021. Influence of Eastern Upwelling systems on marine heatwaves occurrence [J]. Global and Planetary Change, 196: 103379. doi: 10.1016/j.gloplacha.2020.103379 [35] Waliser D E. 1996. Formation and limiting mechanisms for very high sea surface temperature: Linking the dynamics and the thermodynamics [J]. J. Climate, 9(1): 161−188. doi:10.1175/1520-0442(1996)009<0161:FALMFV>2.0.CO;2 [36] Wernberg T, Smale D A, Tuya F, et al. 2012. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot [J]. Nature Climate Change, 3(1): 78−82. doi: 10.1038/nclimate1627 [37] Yao Y L, Wang J J, Yin J J, et al. 2020. Marine heatwaves in China’s marginal seas and adjacent offshore waters: Past, present, and future [J]. J. Geophys. Res., 125(3): e2019JC015801. doi: 10.1029/2019JC015801 [38] 张嘉仪, 钱诚. 2020. 1960~2018年中国高温热浪的线性趋势分析方法与变化趋势 [J]. 气候与环境研究, 25(3): 225−239. doi: 10.3878/j.issn.1006-9585.2020.19134Zhang Jiayi, Qian Cheng. 2020. Linear trends in occurrence of high temperature and heat waves in China for the 1960–2018 period: Method and analysis results [J]. Climatic and Environmental Research (in Chinese), 25(3): 225−239. doi: 10.3878/j.issn.1006-9585.2020.19134 [39] 郑菲, 李建平, 刘婷. 2014. 南半球环状模气候影响的若干研究进展 [J]. 气象学报, 72(5): 926−939. doi: 10.11676/qxxb2014.074Zheng Fei, Li Jianping, Liu Ting. 2014. Some advances in studies of the climatic impacts of the Southern Hemisphere annular mode [J]. Acta Meteor. Sinica (in Chinese), 72(5): 926−939. doi: 10.11676/qxxb2014.074 -