Advanced Search
CHENG Xueling, HU Fei, ZENG Qingcun. Refined Numerical Simulation of Complex Terrain Flow Field[J]. Climatic and Environmental Research, 2015, 20(1): 1-10. doi: 10.3878/j.issn.1006-9585.2014.13225
Citation: CHENG Xueling, HU Fei, ZENG Qingcun. Refined Numerical Simulation of Complex Terrain Flow Field[J]. Climatic and Environmental Research, 2015, 20(1): 1-10. doi: 10.3878/j.issn.1006-9585.2014.13225

Refined Numerical Simulation of Complex Terrain Flow Field

doi: 10.3878/j.issn.1006-9585.2014.13225
  • Received Date: 2013-12-18
  • Wind is an available main form of renewable energy. Following the development of installed capacity growth in China, an improvement is needed in wind resource assessment and wind power forecasting techniques. Numerous studies on the numerical simulation of complex terrain flow fields have been conducted worldwide. With the increasing capacity of numerical calculation, Computational Fluid Dynamics (CFD) models have been used in the meteorological field and are coupled with mesosacle models to simulate the flow fields on complex terrains. In this paper, a coupled model system for wind resource assessment was studied. In this study, a mesoscale meteorological model, the Weather Research and Forecasting (WRF) model, was used to downscale data from the global scale to the inner nested grid scale of a few kilometers and was then coupled with the Fluent method. High-resolution results of wind speed distribution data and refined wind farm information were obtained. The refined WRF/Fluent system was then applied to the complex terrain flow field of the Poyang Lake region and Yangmeishan in Yunnan. The results showed that this approach is viable for the assessment and forecasting of wind energy.
  • loading
  • [1]
    Bechmann A. 2006. Large eddy simulation of atmospheric flow over complex terrain [D]. Ph. D. dissertation, RIso National Laboratory, Technical University of Denmark.
    [2]
    Bechmann A, Sørensen N N, Berg J, et al. 2011. The Bolund experiment, Part II: Blind comparison of microscale flow models [J]. Bound.-Layer Meteor., 141 (2): 245-271.
    [3]
    Beljaars A C M, Walmsley J L, Taylor P A. 1987. A mixed spectral finite difference model for neutrally stratified boundary-layer flow over roughness change and topography [J]. Bound.-Layer Meteor., 38 (3): 273-303.
    [4]
    Berg J, Mann J, Bechmann A, et al. 2011. The Bolund experiment, Part I: Flow over asteep, three-dimensional hill [J]. Bound.-Layer Meteor., 141 (2): 219-243.
    [5]
    Brower M C, Bailey B, Zack J. 2001. Applications and validations of mesomap wind mapping system in different climatic regimes [C]// Proc. of Windpower 2001. Amer. Wind Energy Assoc., Washington DC.
    [6]
    Cabezón D, Iniesta A, Ferrer E, et al. 2007. Comparing WAsP and Fluent for highly complex terrain wind prediction [C]// Wind Energy, Proceedings of the Euromech Colloquium. Oldenburg, Germany, 275-279.
    [7]
    Cheng Xueling, Hu Fei. 2005. Numerical studies on flow fields around buildings in an urban street canyon and cross-road [J]. Advances in Atmospheric Sciences, 22 (2): 290-299.
    [8]
    程雪玲, 胡非. 2005. 大气边界层内羽流扩散研究 [J]. 力学学报, 37(2): 148-156. Cheng Xueling, Hu Fei. 2005. The research of plume dispersion in the atmospheric boundary layer [J]. Acta Mechanica Sinica (in Chinese), 37 (2): 148-156.
    [9]
    程雪玲, 胡非. 2006. 复杂地形网格生成研究 [J]. 计算力学学报, 23 (3): 313-316. Cheng Xueling, Hu Fei. 2006. The study of grid formation on complex terrain [J]. Chinese Journal of Computational Mechanics (in Chinese), 23 (3): 313-316.
    [10]
    Dudhia J, Gill D, Manning K, et al. 2005. PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and Users' Guide: MM5 Modeling System Version 3 [M]// Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research. Boulder, Colorado, USA.
    [11]
    方艳莹, 徐海明, 朱蓉, 等. 2012. 基于WRF和CFD软件结合的风能资源数值模拟试验研究 [J]. 气象, 38 (11): 1378-1389. Fang Yanying, Xu Haiming, Zhu Rong, et al. 2012. Study on numerical simulation of wind energy resources based on WRF and CFD models [J]. Meteorologyical Monthly (in Chinese), 38 (11): 1378-1389.
    [12]
    Finardi S, Morselli M G, Jeannet P, et al. 1997. Wind flow models over complex terrain for dispersion calculations [C]// European Cooperation in the field of Scientific and Technical Research (COST) Action 710: Pre-processing of Meteorological Data for Dispersion Models. Report of Working Group 4.
    [13]
    何晓凤, 周荣卫, 朱蓉. 2010. MM5 与CFD软件相结合对复杂地形风资源模拟初探——以鄱阳湖地区为例 [J]. 资源科学, 32 (4): 650-655. He Xiaofeng, Zhou Rongwei, Zhu Rong. 2010. A study on wind resources in complex terrain simulated by the combination of MM5 and CFD software [J]. Resources Science (in Chinese), 32 (4): 650-655.
    [14]
    Hunt J C R, Leibovich S, Richards K J. 1988. Turbulent shear flows over low hills [J]. Quart. J. Roy. Meteor. Soc., 114 (484): 1435-1470.
    [15]
    Ishikawa H. 1994. Mass-consistent wind model as a meteorological preprocessor for tracer transport models [J]. J. Appl. Meteor., 33 (6): 33-743.
    [16]
    Jackson P S, Hunt J C R. 1975. Turbulent wind flow over a low hill [J]. Quart. J. Roy. Meteor. Soc., 101 (430): 929-955.
    [17]
    Kaimal J C, Finnigan J J. 1994. Atmospheric Boundary Layer Flows—Their Structure and Measurement [M]. Oxford: Oxford University Press, 289pp.
    [18]
    Launder B E, Spalding D B. 1972. Lectures in Mathematical Models of Turbulence [M]. London: Academic Press.
    [19]
    Li Lei, Hu Fei, Cheng Xueling, et al. 2004. The application of computational fluid dynamics to pedestrian level wind safety problem induced by high-rise buildings [J]. Chinese Physics, 13 (7): 1070-1075.
    [20]
    李磊, 张立杰, 张宁, 等. 2010. FLUENT 在复杂地形风场精细模拟中的应用研究 [J]. 高原气象, 29(3): 621-628. Li Lei, Zhang Lijie, Zhang Ning, et al. 2010. Application of FLUENT on the fine scale simulation of the wind field over complex terrain [J]. Plateau Meteorology (in Chinese), 29 (3): 621-628.
    [21]
    Li L, Chan P W. 2012. Numerical simulation study of the effect of buildings and complex terrain on the low-level winds at an airport in typhoon situation [J]. Meteorologische Zeitschrift, 21 (2): 183-192.
    [22]
    Li L, Chan P W, Zhang L J, et al. 2013. Numerical simulation of a lee wave case over three-dimensional mountainous terrain under strong wind condition [J]. Advances in Meteorology, Article ID 304321.
    [23]
    Mandas N, Cambuli F, Crasto G, et al. 2004. Numerical simulation of the atmospheric boundary layer (ABL) over complex terrains [C]// EWEC 2004, London, UK.
    [24]
    Mortensen N G, Landberg L. 1993. Wind Altas Analysis and Application Program (WAsP) User's Guide [M]. Riso National Laboratory, Roskilde, Denmark, 133.
    [25]
    Neophytou M K A, Britte R E. 2005. Modelling the wind flow in complex urban topographies: A computational-fluid-dynamics simulation of the Central London Area [C]// 5th GRACM International Congress on Computational Mechanics, Limassol, Cyprus.
    [26]
    Sadek R, Soulhac L, Brocheton F, et al. 2011. Evaluation of wind field and dispersion models in the presence of complex terrain [C]// 14th Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes. Kos, Greece, 32-36.
    [27]
    Shih T H, Liou W W, Shabbir A, et al. 1995. A new k-e eddy-viscosity model for high Reynolds number turbulent flows—Model development and validation [J]. Computers Fluids, 24 (3): 227-238.
    [28]
    Stangroom P. 2004. CFD modelling of wind flow over terrain [D]. Ph. D. dissertation, the University of Nottingham.
    [29]
    Taylor P A. 1998. Turbulent boundary-layer flow over low and moderate slope hills [J]. Journal of Wind Engineering and Industrial Aerodynamics, 74-76: 25-47.
    [30]
    Thunis P, Bornstein R. 1996. Hierarchy of mesoscale flow assumptions and equations [J]. J. Atmos. Sci., 53 (3): 380-397.
    [31]
    Versteeg H K, Malalasekera W. 1995. An Introduction to Computational Fluid Dynamics [M]. Harlow: Longman Group, 67-77.
    [32]
    Walko R L, Tremback C J. 2006. RAMS: The Regional Atmospheric Modeling System (version 6.0)—Model Input Namelist Parameters, Document Edition 1.4 [M]. ATEMT Company, Boulder, Colorado, USA.
    [33]
    Wang W G, Shaw W J, Seiple T E, et al. 2008. An evaluation of a diagnostic wind model (CALMET) [J]. Journal of Applied Meteorology and Climatology, 47 (6): 1739-1756.
    [34]
    Weng W, Taylor P A, Walmsley J L. 2000. Guidelines for airflow over complex terrain: Model developments [J]. Journal of Wind Engineering and Industrial Aerodynamics, 86 (2-3): 169-186.
    [35]
    Yakhot V, Orszag S A. 1986. Renormalization group analysis of turbulence. I. Basic theory [J]. Journal of Scientific Computing, 1 (1): 3-51.
    [36]
    Yu W, Benoit R, Girard C, et al. 2006. Wind energy simulation toolkit (WEST): A wind mapping system for use by the windenergy industry [J]. Wind Engineering, 30 (1): 15-33.
    [37]
    张德, 朱蓉, 罗勇, 等. 2008. 风能模拟系统WEST在中国风能数值模拟中的应用 [J]. 高原气象, 27 (1): 202-207. Zhang De, Zhu Rong, Luo Yong, et al. 2008. Application of wind energy simulation toolkit (WEST) to wind energy numerical simulation of China [J]. Plateau Meteorology (in Chinese), 27 (1): 202-207.
    [38]
    周荣卫, 何晓凤, 朱蓉. 2010. MM5/Calmet模式系统在风能资源评估中的应用 [J]. 自然资源学报, 25 (12): 2102-2113. Zhou Rongwei, He Xiaofeng, Zhu Rong. 2010. Application of MM5/Calmet model system in wind energy resource assessment [J]. Journal of Natural Resources (in Chinese), 25 (12): 2102-2113.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3778) PDF downloads(3842) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return