Citation: | Zhaohui LIN, Kun WANG, Ziniu XIAO, He ZHANG, Yanling ZHAN. The Madden-Julian Oscillation Simulated by the IAP AGCM4.0[J]. Climatic and Environmental Research, 2017, 22(2): 115-133. doi: 10.3878/j.issn.1006-9585.2016.16085 |
[1] |
Arakawa A, Schubert W H. 1974. Interaction of a cumulus cloud ensemble with the large-scale environment, Part Ⅰ[J]. J. Atmos. Sci., 31 (3):674-701, doi:10.1175/1520-0469(1974)031<0674:ioacce>2.0.co;2.
|
[2] |
Benedict J J, Randall D A. 2011. Impacts of idealized air-sea coupling on Madden-Julian oscillation structure in the super parameterized CAM[J]. J. Atmos. Sci., 68 (9):1990-2008, doi: 10.1175/JAS-D-11-04.1.
|
[3] |
Ding R Q, Li J P, Seo K H. 2011. Estimate of the predictability of boreal summer and winter intraseasonal oscillations from observations[J]. Mon. Wea. Rev., 139 (8):2421-2438, doi: 10.1175/2011MWR3571.1.
|
[4] |
丁一汇, 梁萍. 2010.基于MJO的延伸预报[J].气象, 36 (7):111-122. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201007019.htm
Ding Yihui, Liang Ping. 2010. Extended range forecast basing on MJO[J]. Meteorological Monthly (in Chinese), 36 (7):111-122. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201007019.htm
|
[5] |
冯俊阳, 肖子牛. 2012.热带低频振荡的强度和相位对中国南方冬季降水的影响[J].气象, 38 (11):1355-1366. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201211007.htm
Feng Junyang, Xiao Ziniu. 2012. Impact of low-frequency oscillation intensity and phases in tropics on the winter precipitation in southern China[J]. Meteorological Monthly (in Chinese), 38 (11):1355-1366. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201211007.htm
|
[6] |
冯俊阳, 肖子牛. 2013.热带大气低频振荡强度年际异常对中国东部冬季降水的影响[J].热带气象学报, 29 (4):559-569. doi: 10.3969/j.issn.1004-4965.2013.04.004
Feng Junyang, Xiao Ziniu. 2013. Impact of the interannual variability of the low-frequency oscillation intensity in the tropics on the wintertime rainfall in East China[J]. Journal of Tropical Meteorology (in Chinese), 29 (4):559-569, doi: 10.3969/j.issn.1004-4965.2013.04.004.
|
[7] |
Fu X H, Wang B. 2004. Differences of boreal summer intraseasonal oscillations simulated in an atmosphere-ocean coupled model and an atmosphere-only model[J]. J. Climate, 17 (6):1263-1271, doi:10.1175/1520-0442(2004)017<1263:dobsio>2.0.co;2.
|
[8] |
Fu X H, Wang B, Li T, et al. 2003. Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean[J]. J. Atmos. Sci., 60 (15):1733-1753, doi:10.1175/1520-0469(2003)060<1733:cbnioa>2.0.co;2.
|
[9] |
Fu X H, Wang B, Waliser D E, et al. 2007. Impact of atmosphere-ocean coupling on the predictability of monsoon intraseasonal oscillations[J]. J. Atmos. Sci., 64 (1):157-174, doi: 10.1175/JAS3830.1.
|
[10] |
Gottschalck J, Wheeler M, Weickmann K, et al. 2010. A framework for assessing operational Madden-Julian oscillation forecasts:A CLIVAR MJO working group project[J]. Bull. Amer. Meteor. Soc., 91 (9):1247-1258, doi: 10.1175/2010bams2816.1.
|
[11] |
He J H, Lin H, Wu Z W. 2011. Another look at influences of the Madden-Julian oscillation on the wintertime East Asian weather[J]. J. Geophys. Res., 116 (D3):D03109, doi: 10.1029/2010JD014787.
|
[12] |
Hendon H H. 2000. Impact of air-sea coupling on the Madden-Julian oscillation in a general circulation model[J]. J. Atmos. Sci., 57 (24):3939-3952, doi:10.1175/1520-0469(2001)058<3939:ioasco>2.0.co;2.
|
[13] |
Holloway C E, Woolnough S J, Lister G M S. 2013. The effects of explicit versus parameterized convection on the MJO in a large-domain high-resolution tropical case study. Part Ⅰ:Characterization of large-scale organization and propagation[J]. J. Atmos. Sci., 70 (5):1342-1369, doi: 10.1175/JAS-D-12-0227.1.
|
[14] |
Hurrell J W, Hack J J, Shea D, et al. 2008. A new sea surface temperature and sea ice boundary dataset for the community atmosphere model[J]. J. Climate, 21 (19):5145-5153, doi: 10.1175/2008jcli2292.1.
|
[15] |
Inness P M, Slingo J M, Woolnough S J, et al. 2001. Organization of tropical convection in a GCM with varying vertical resolution; implications for the simulation of the Madden-Julian oscillation[J]. Climate Dyn., 17 (10):777-793, doi: 10.1007/s003820000148.
|
[16] |
Itoh H. 1989. The mechanism for the scale selection of tropical intraseasonal oscillations. Part Ⅰ:Selection of wavenumber 1 and the three-scale structure[J]. J. Atmos. Sci., 46 (12):1779-1798, doi:10.1175/1520-0469 (1989)046<1779:tmftss>2.0.co;2.
|
[17] |
贾小龙. 2006. 热带大气季节内振荡的数值模拟研究[D]. 中国科学院大气物理研究所博士学位论文, 85-88.
Jia Xiaolong. 2006. Numerical simulations of the tropical intraseasonal oscillation[D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences, 85-88.
|
[18] |
Jia X L, Chen L J, Ren F M, et al. 2011. Impacts of the MJO on winter rainfall and circulation in China[J]. Advances in Atmospheric Sciences, 28 (3):521-533, doi: 10.1007/s00376-010-9118-z.
|
[19] |
Kanamitsu M, Ebisuzaki W, Woollen J, et al. 2002. NCEP-DOE AMIP-Ⅱ reanalysis (R-2)[J]. Bull. Amer. Meteor. Soc., 83 (11):1631-1643, doi: 10.1175/bams-83-11-1631.
|
[20] |
Kim D, Sperber K, Stern W, et al. 2009. Application of MJO simulation diagnostics to climate models[J]. J. Climate, 22 (23):6413-6436, doi: 10.1175/2009jcli3063.1.
|
[21] |
Kodama C, Yamada Y, Noda A T, et al. 2015. A 20-year climatology of a NICAM AMIP-type simulation[J]. J. Meteor. Soc. Japan, 93 (4):393-424, doi: 10.2151/jmsj.2015-024.
|
[22] |
Lau W K M, Waliser D E. 2012. Intraseasonal Variability in the Atmosphere-Ocean Climate System[M]. Berlin Heidelberg:Springer, doi: 10.1007/978-3-642-13914-7.
|
[23] |
Lau W K M, Waliser D E, Waliser D. 2012. Predictability and forecasting[M]//Lau W K M, Waliser D E. Intraseasonal Variability in the Atmosphere-Ocean Climate System. Berlin Heidelberg:Springer, 433-476, doi: 10.1007/978-3-642-13914-7_12.
|
[24] |
李崇银. 1983.对流凝结加热与不稳定波[J].大气科学, 7 (3):260-268. doi: 10.3878/j.issn.1006-9895.1983.03.03
Li Chongyin. 1983. Convective condensation heating and unstable mode[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 7 (3):260-268, doi: 10.3878/j.issn.1006-9895.1983.03.03.
|
[25] |
李崇银. 2004.大气季节内振荡研究的新进展[J].自然科学进展, 14 (7):734-741. doi: 10.3321/j.issn:1002-008X.2004.07.003
Li Chongyin. 2004. Progress on the study of intraseasonal oscillation[J]. Progress in Natural Science (in Chinese), 14 (7):734-741, doi: 10.3321/j.issn:1002-008X.2004.07.003.
|
[26] |
Li C Y, Jia X L, Ling J, et al. 2009. Sensitivity of MJO simulations to diabatic heating profiles[J]. Climate Dyn., 32 (2-3):167-187, doi: 10.1007/s00382-008-0455-x.
|
[27] |
李崇银, 潘静, 宋洁. 2013. MJO研究新进展[J].大气科学, 37 (2):229-252. doi: 10.3878/j.issn.1006-9895.2012.12318
Li Chongyin, Pan Jing, Song Jie. 2013. Progress on the MJO research in recent years[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (2):229-252, doi: 10.3878/j.issn.1006-9895.2012.12318.
|
[28] |
Liebmann B, Simth C A. 1996. Description of a complete (interpolated) outgoing longwave radiation dataset[J]. Bull. Amer. Meteor. Soc., 77 (6):1275-1277. http://citeseerx.ist.psu.edu/showciting?cid=2773917
|
[29] |
Lin J L, Kiladis G N, Mapes B E, et al. 2006. Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part Ⅰ:Convective signals[J]. J. Climate, 19 (12):2665-2690, doi: 10.1175/jcli3735.1.
|
[30] |
Ling J, Li C Y, Jia X L. 2009. Impacts of cumulus momentum transport on MJO simulation[J]. Advances in Atmospheric Sciences, 26 (5):864-876, doi: 10.1007/s00376-009-8016-8.
|
[31] |
Ling J, Zhang C D. 2011. Structural evolution in heating profiles of the MJO in global reanalyses and TRMM retrievals[J]. J. Climate, 24 (3):825-842, doi: 10.1175/2010jcli3826.1.
|
[32] |
Madden R A, Julian P R. 1971. Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific[J]. J. Atmos. Sci., 28 (5):702-708, doi:10.1175/1520-0469(1971)028<0702:doadoi>2.0.co;2.
|
[33] |
Madden R A, Julian P R. 1972. Description of global-scale circulation cells in the tropics with a 40-50 day period[J]. J. Atmos. Sci., 29 (6):1109-1123, doi:10.1175/1520-0469(1972)029<1109:dogscc>2.0.co;2.
|
[34] |
Madden R A, Julian P R. 2012. Historical perspective[M]//Lau W K M, Waliser D E. Intraseasonal Variability in the Atmosphere-Ocean Climate System. Berlin Heidelberg:Springer, 1-18, doi:10.1007/3-540-27250-X_1.
|
[35] |
Maloney E D, Hartmann D L. 2001. The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization[J]. J. Climate, 14 (9):2015-2034, doi:10.1175/1520-0442(2001)014<2015:tsoivi>2.0.co;2.
|
[36] |
Murakami H, Vecchi G A, Underwood S, et al. 2015. Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model[J]. J. Climate, 28 (23):9058-9079, doi: 10.1175/jcli-d-15-0216.1.
|
[37] |
Neale R B, Richter J H, Jochum M. 2008. The impact of convection on ENSO:From a delayed oscillator to a series of events[J]. J. Climate, 21 (22):5904-5924, doi: 10.1175/2008jcli2244.1.
|
[38] |
Pegion K, Kirtman B P. 2008. The impact of air-sea interactions on the predictability of the tropical intraseasonal oscillation[J]. J. Climate, 21 (22):5870-5886, doi: 10.1175/2008jcli2209.1.
|
[39] |
Richter J H, Rasch P J. 2008. Effects of convective momentum transport on the atmospheric circulation in the community atmosphere model, version 3[J]. J. Climate, 21 (7):1487-1499, doi: 10.1175/2007jcli1789.1.
|
[40] |
Rienecker M M, Suarez M J, Gelaro R, et al. 2011. MERRA:NASA's modern-era retrospective analysis for research and applications[J]. J. Climate, 24 (14):3624-3648, doi: 10.1175/jcli-d-11-00015.1.
|
[41] |
Seo K H, Wang W Q, Gottschalck J, et al. 2009. Evaluation of MJO forecast skill from several statistical and dynamical forecast models[J]. J. Climate, 22 (9):2372-2388, doi: 10.1175/2008jcli2421.1.
|
[42] |
Slingo J M, Sperber K R, Boyle J S, et al. 1996. Intraseasonal oscillations in 15 atmospheric general circulation models:Results from an AMIP diagnostic subproject[J]. Climate Dyn., 12 (5):325-357, doi: 10.1007/bf00231106.
|
[43] |
Su T H, Xue F, Zhang H. 2014. Simulating the intraseasonal variation of the East Asian summer monsoon by IAP AGCM4.0[J]. Advances in Atmospheric Sciences, 31 (3):570-580, doi: 10.1007/s00376-013-3029-8.
|
[44] |
孙泓川, 周广庆, 曾庆存. 2012. IAP第四代大气环流模式的耦合气候系统模式模拟性能评估[J].大气科学, 36 (2):215-233. doi: 10.3878/j.issn.1006-9895.2011.11062
Sun Hongchuan, Zhou Guangqing, Zeng Qingcun. 2012. Assessments of the climate system model (CAS-ESM-C) using IAP AGCM 4 as its atmospheric component[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (2):215-233, doi: 10.3878/j.issn.1006-9895.2011.11062.
|
[45] |
Tiedtke M. 1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models[J]. Mon. Wea. Rev., 117 (8):1779-1800, doi:10.1175/1520-0493(1989)117<1779:acmfsf>2.0.co;2.
|
[46] |
Tung W W, Gao J B, Hu J, et al. 2011. Detecting chaos in heavy-noise environments[J]. Physical Review E, 83 (4):046210, doi: 10.1103/physreve.83.046210.
|
[47] |
Vitart F, Woolnough S, Balmaseda M A, et al. 2007. Monthly forecast of the Madden-Julian oscillation using a coupled GCM[J]. Mon. Wea. Rev., 135 (7):2700-2715, doi: 10.1175/mwr3415.1.
|
[48] |
Waliser D, Sperber K, Hendon H, et al. 2009. MJO simulation diagnostics[J]. J. Climate, 22 (11):3006-3030, doi: 10.1175/2008jcli2731.1.
|
[49] |
Waliser D E, Lau K M, Kim J H. 1999. The influence of coupled sea surface temperatures on the Madden-Julian oscillation:A model perturbation experiment[J]. J. Atmos. Sci., 56 (3):333-358, doi:10.1175/1520-0469(1999)056<0333:tiocss>2.0.co;2.
|
[50] |
Waliser D E, Zhang Z Z, Lau K M, et al. 2001. Interannual sea surface temperature variability and the predictability of tropical intraseasonal variability[J]. J. Atmos. Sci., 58 (17):2596-2615, doi:10.1175/1520-0469 (2001)058<2596:isstva>2.0.co;2.
|
[51] |
Wang W Q, Schlesinger M E. 1999. The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM[J]. J. Climate, 12 (5):1423-1457, doi:10.1175/1520-0442(1999)012<1423:tdocpo>2.0.co;2.
|
[52] |
Wheeler M C, Hendon H H. 2004. An all-season real-time multivariate MJO index:Development of an index for monitoring and prediction[J]. Mon. Wea. Rev., 132 (8):1917-1932, doi:10.1175/1520-0493(2004)132<1917:aarmmi>2.0.co;2.
|
[53] |
Woolnough S J, Vitart F, Balmaseda M A. 2007. The role of the ocean in the Madden-Julian oscillation:Implications for MJO prediction[J]. Quart. J. Roy. Meteor. Soc., 133 (622):117-128, doi: 10.1002/qj.4.
|
[54] |
Yan Z B, Lin Z H, Zhang H. 2014. The relationship between the East Asian subtropical westerly jet and summer precipitation over East Asia as simulated by the IAP AGCM4.0[J]. Atmospheric and Oceanic Science Letters, 7 (6):487-492, doi: 10.3878/AOSL20140048.
|
[55] |
晏正滨, 林朝晖, 张贺. 2015.大气环流模式IAP AGCM4.0对东亚高空副热带西风急流的模拟及偏差原因分析[J].气候与环境研究, 20 (4):393-410. doi: 10.3878/j.issn.1006-9585.2015.14095
Yan Zhengbin, Lin Zhaohui, Zhang He. 2015. Evaluation and bias analysis for the performance of IAP AGCM4.0 in simulating the East Asian subtropical westerly jet[J]. Climatic and Environmental Research (in Chinese), 20 (4):393-410, doi: 10.3878/j.issn.1006-9585.2015.14095.
|
[56] |
曾庆存, 林朝晖. 2010.地球系统动力学模式和模拟研究的进展[J].地球科学进展, 25 (1):1-6. doi: 10.11867/j.issn.1001-8166.2010.01.0001
Zeng Qingcun, Lin Zhaohui. 2010. Recent progress on the earth system dynamical model and its numerical simulations[J]. Advances in Earth Science (in Chinese), 25 (1):1-6, doi: 10.11867/j.issn.1001-8166.2010.01.0001.
|
[57] |
Zhang C D. 2005. Madden-Julian oscillation[J]. Rev. Geophys., 43 (2), doi: 10.1029/2004rg000158.
|
[58] |
Zhang C D. 2013. Madden-Julian oscillation:Bridging weather and climate[J]. Bull. Amer. Meteor. Soc., 94 (12):1849-1870, doi: 10.1175/bams-d-12-00026.1.
|
[59] |
Zhang G J, Mu M Q. 2005. Simulation of the Madden-Julian oscillation in the NCAR CCM3 using a revised Zhang-McFarlane convection parameterization scheme[J]. J. Climate, 18 (19):4046-4064, doi: 10.1175/jcli3508.1.
|
[60] |
Zhang G J, McFarlane N A. 1995. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model[J]. Atmos.-Ocean, 33 (3):407-446, doi:10. 1080/07055900.1995.9649539.
|
[61] |
张贺. 2009. 大气环流模式IAP AGCM4. 0的设计及其数值模拟[D]. 中国科学院大气物理研究所博士学位论文, 194pp.
Zhang He. 2009. Development of IAP atmospheric general circulation model version 4.0 and its climate simulations[D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences, 194pp.
|
[62] |
张贺, 林朝晖, 曾庆存. 2009. IAP AGCM-4动力框架的积分方案及模式检验[J].大气科学, 33 (6):1267-1285. doi: 10.3878/j.issn.1006-9895.2009.06.13
Zhang He, Lin Zhaohui, Zeng Qingcun. 2009. The computational scheme and the test for dynamical framework of IAP AGCM-4[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33 (6):1267-1285, doi:10.3878/j.issn.1006-9895. 2009.06.13.
|
[63] |
张贺, 林朝晖, 曾庆存. 2011.大气环流模式中动力框架与物理过程的相互响应[J].气候与环境研究, 16 (1):15-30. doi: 10.3878/j.issn.1006-9585.2011.01.02
Zhang He, Lin Zhaohui, Zeng Qingcun. 2011. The mutual response between dynamical core and physical parameterizations in atmospheric general circulation models[J]. Climatic and Environmental Research (in Chinese), 16 (1):15-30, doi: 10.3878/j.issn.1006-9585.2011.01.02.
|
[64] |
Zhang H, Zhang M H, Zeng Q C. 2013. Sensitivity of simulated climate to two atmospheric models:Interpretation of differences between dry models and moist models[J]. Mon. Wea. Rev., 141 (5):1558-1576, doi: 10.1175/mwr-d-11-00367.1.
|
[65] |
Zhang L N, Wang B Z, Zeng Q C. 2009. Impact of the Madden-Julian oscillation on summer rainfall in southeast China[J]. J. Climate, 22 (2):201-216, doi: 10.1175/2008jcli1959.1.
|
[66] |
Zhao C B, Ren H L, Song L C, et al. 2015. Madden-Julian oscillation simulated in BCC climate models[J]. Dyn. Atmos. Oceans, 72:88-101, doi: 10.1016/j.dynatmoce.2015.10.004.
|