Advanced Search
Zhaohui LIN, Kun WANG, Ziniu XIAO, He ZHANG, Yanling ZHAN. The Madden-Julian Oscillation Simulated by the IAP AGCM4.0[J]. Climatic and Environmental Research, 2017, 22(2): 115-133. doi: 10.3878/j.issn.1006-9585.2016.16085
Citation: Zhaohui LIN, Kun WANG, Ziniu XIAO, He ZHANG, Yanling ZHAN. The Madden-Julian Oscillation Simulated by the IAP AGCM4.0[J]. Climatic and Environmental Research, 2017, 22(2): 115-133. doi: 10.3878/j.issn.1006-9585.2016.16085

The Madden-Julian Oscillation Simulated by the IAP AGCM4.0

doi: 10.3878/j.issn.1006-9585.2016.16085

Special Scientific Research Fund of Meteorological Public Welfare Profession of China GYHY201406021

Natural Science Foundation of China 41575095

Natural Science Foundation of China 41175073

Natural Science Foundation of China 41105050

National Key Research and Development Program 2016YFC0402702

Key Project of Chinese Academy of Sciences QYZDB-SSW-DQC017

  • Received Date: 2016-04-25
    Available Online: 2016-08-08
  • Publish Date: 2017-03-20
  • The performance of IAP (Institute of Atmospheric Physics) Atmospheric General Circulation Model Version 4.0 (IAP AGCM4.0) in simulating the Madden-Julian Oscillation (MJO) is examined in this paper using the 30-year model integration results during 1979-2008. It is found that the IAP AGCM4.0 can reproduce the observed wave number-frequency power spectrum of MJO to some extent, with dominant spectrum power at wavenumber 1 and periods of 30-80 days. Meanwhile, the IAP AGCM4.0 can generally reproduce the observed coherent eastward propagating signals at the intraseasonal time scale, with the power of eastward moving waves much stronger than that of the westward moving waves. The RMM (Real-time Multivariate MJO) index is further applied to evaluate the simulated MJO structure. It is found that IAP AGCM4.0 can well reproduce the observed intraseasonal signals of 850 hPa and 200 hPa zonal winds and the enhanced convection structure of MJO in the tropical regions. However, the simulated eastward propagation is generally too fast, and the simulated westward propagation is stronger than the observation. IAP AGCM4.0 also splits the intraseasonal convective anomalies into two centers straddling the equator, and produces weaker convection. The vertical profile of diabatic heating simulated by the IAP AGCM4.0 has a similar structure to the observation, but in the Indian Ocean and western Pacific Ocean, positive maximum heating occurs later than the observation in phases. Numerical experiments are conducted by using different RHc (relative humidity criterion) values of 85%, 90%, 95%, and 100% for triggering the convection. It is found that the vertical diabatic heating profiles for experiments with different RHc vary considerably, which can lead to differences in the simulated MJO features. Comparison of results further shows that both the main features of MJO and vertical diabatic heating profiles are best simulated when RHc is set to 90%. This suggests that proper specifications of the values for key parameters in the convective parameterization scheme might help improve the model capability in simulating the observed features of MJO.
  • loading
  • [1]
    Arakawa A, Schubert W H. 1974. Interaction of a cumulus cloud ensemble with the large-scale environment, Part Ⅰ[J]. J. Atmos. Sci., 31 (3):674-701, doi:10.1175/1520-0469(1974)031<0674:ioacce>;2.
    Benedict J J, Randall D A. 2011. Impacts of idealized air-sea coupling on Madden-Julian oscillation structure in the super parameterized CAM[J]. J. Atmos. Sci., 68 (9):1990-2008, doi: 10.1175/JAS-D-11-04.1.
    Ding R Q, Li J P, Seo K H. 2011. Estimate of the predictability of boreal summer and winter intraseasonal oscillations from observations[J]. Mon. Wea. Rev., 139 (8):2421-2438, doi: 10.1175/2011MWR3571.1.
    丁一汇, 梁萍. 2010.基于MJO的延伸预报[J].气象, 36 (7):111-122.

    Ding Yihui, Liang Ping. 2010. Extended range forecast basing on MJO[J]. Meteorological Monthly (in Chinese), 36 (7):111-122.
    冯俊阳, 肖子牛. 2012.热带低频振荡的强度和相位对中国南方冬季降水的影响[J].气象, 38 (11):1355-1366.

    Feng Junyang, Xiao Ziniu. 2012. Impact of low-frequency oscillation intensity and phases in tropics on the winter precipitation in southern China[J]. Meteorological Monthly (in Chinese), 38 (11):1355-1366.
    冯俊阳, 肖子牛. 2013.热带大气低频振荡强度年际异常对中国东部冬季降水的影响[J].热带气象学报, 29 (4):559-569. doi: 10.3969/j.issn.1004-4965.2013.04.004

    Feng Junyang, Xiao Ziniu. 2013. Impact of the interannual variability of the low-frequency oscillation intensity in the tropics on the wintertime rainfall in East China[J]. Journal of Tropical Meteorology (in Chinese), 29 (4):559-569, doi: 10.3969/j.issn.1004-4965.2013.04.004.
    Fu X H, Wang B. 2004. Differences of boreal summer intraseasonal oscillations simulated in an atmosphere-ocean coupled model and an atmosphere-only model[J]. J. Climate, 17 (6):1263-1271, doi:10.1175/1520-0442(2004)017<1263:dobsio>;2.
    Fu X H, Wang B, Li T, et al. 2003. Coupling between northward-propagating, intraseasonal oscillations and sea surface temperature in the Indian Ocean[J]. J. Atmos. Sci., 60 (15):1733-1753, doi:10.1175/1520-0469(2003)060<1733:cbnioa>;2.
    Fu X H, Wang B, Waliser D E, et al. 2007. Impact of atmosphere-ocean coupling on the predictability of monsoon intraseasonal oscillations[J]. J. Atmos. Sci., 64 (1):157-174, doi: 10.1175/JAS3830.1.
    Gottschalck J, Wheeler M, Weickmann K, et al. 2010. A framework for assessing operational Madden-Julian oscillation forecasts:A CLIVAR MJO working group project[J]. Bull. Amer. Meteor. Soc., 91 (9):1247-1258, doi: 10.1175/2010bams2816.1.
    He J H, Lin H, Wu Z W. 2011. Another look at influences of the Madden-Julian oscillation on the wintertime East Asian weather[J]. J. Geophys. Res., 116 (D3):D03109, doi: 10.1029/2010JD014787.
    Hendon H H. 2000. Impact of air-sea coupling on the Madden-Julian oscillation in a general circulation model[J]. J. Atmos. Sci., 57 (24):3939-3952, doi:10.1175/1520-0469(2001)058<3939:ioasco>;2.
    Holloway C E, Woolnough S J, Lister G M S. 2013. The effects of explicit versus parameterized convection on the MJO in a large-domain high-resolution tropical case study. Part Ⅰ:Characterization of large-scale organization and propagation[J]. J. Atmos. Sci., 70 (5):1342-1369, doi: 10.1175/JAS-D-12-0227.1.
    Hurrell J W, Hack J J, Shea D, et al. 2008. A new sea surface temperature and sea ice boundary dataset for the community atmosphere model[J]. J. Climate, 21 (19):5145-5153, doi: 10.1175/2008jcli2292.1.
    Inness P M, Slingo J M, Woolnough S J, et al. 2001. Organization of tropical convection in a GCM with varying vertical resolution; implications for the simulation of the Madden-Julian oscillation[J]. Climate Dyn., 17 (10):777-793, doi: 10.1007/s003820000148.
    Itoh H. 1989. The mechanism for the scale selection of tropical intraseasonal oscillations. Part Ⅰ:Selection of wavenumber 1 and the three-scale structure[J]. J. Atmos. Sci., 46 (12):1779-1798, doi:10.1175/1520-0469 (1989)046<1779:tmftss>;2.
    贾小龙. 2006. 热带大气季节内振荡的数值模拟研究[D]. 中国科学院大气物理研究所博士学位论文, 85-88.

    Jia Xiaolong. 2006. Numerical simulations of the tropical intraseasonal oscillation[D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences, 85-88.
    Jia X L, Chen L J, Ren F M, et al. 2011. Impacts of the MJO on winter rainfall and circulation in China[J]. Advances in Atmospheric Sciences, 28 (3):521-533, doi: 10.1007/s00376-010-9118-z.
    Kanamitsu M, Ebisuzaki W, Woollen J, et al. 2002. NCEP-DOE AMIP-Ⅱ reanalysis (R-2)[J]. Bull. Amer. Meteor. Soc., 83 (11):1631-1643, doi: 10.1175/bams-83-11-1631.
    Kim D, Sperber K, Stern W, et al. 2009. Application of MJO simulation diagnostics to climate models[J]. J. Climate, 22 (23):6413-6436, doi: 10.1175/2009jcli3063.1.
    Kodama C, Yamada Y, Noda A T, et al. 2015. A 20-year climatology of a NICAM AMIP-type simulation[J]. J. Meteor. Soc. Japan, 93 (4):393-424, doi: 10.2151/jmsj.2015-024.
    Lau W K M, Waliser D E. 2012. Intraseasonal Variability in the Atmosphere-Ocean Climate System[M]. Berlin Heidelberg:Springer, doi: 10.1007/978-3-642-13914-7.
    Lau W K M, Waliser D E, Waliser D. 2012. Predictability and forecasting[M]//Lau W K M, Waliser D E. Intraseasonal Variability in the Atmosphere-Ocean Climate System. Berlin Heidelberg:Springer, 433-476, doi: 10.1007/978-3-642-13914-7_12.
    李崇银. 1983.对流凝结加热与不稳定波[J].大气科学, 7 (3):260-268. doi: 10.3878/j.issn.1006-9895.1983.03.03

    Li Chongyin. 1983. Convective condensation heating and unstable mode[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 7 (3):260-268, doi: 10.3878/j.issn.1006-9895.1983.03.03.
    李崇银. 2004.大气季节内振荡研究的新进展[J].自然科学进展, 14 (7):734-741. doi: 10.3321/j.issn:1002-008X.2004.07.003

    Li Chongyin. 2004. Progress on the study of intraseasonal oscillation[J]. Progress in Natural Science (in Chinese), 14 (7):734-741, doi: 10.3321/j.issn:1002-008X.2004.07.003.
    Li C Y, Jia X L, Ling J, et al. 2009. Sensitivity of MJO simulations to diabatic heating profiles[J]. Climate Dyn., 32 (2-3):167-187, doi: 10.1007/s00382-008-0455-x.
    李崇银, 潘静, 宋洁. 2013. MJO研究新进展[J].大气科学, 37 (2):229-252. doi: 10.3878/j.issn.1006-9895.2012.12318

    Li Chongyin, Pan Jing, Song Jie. 2013. Progress on the MJO research in recent years[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37 (2):229-252, doi: 10.3878/j.issn.1006-9895.2012.12318.
    Liebmann B, Simth C A. 1996. Description of a complete (interpolated) outgoing longwave radiation dataset[J]. Bull. Amer. Meteor. Soc., 77 (6):1275-1277.
    Lin J L, Kiladis G N, Mapes B E, et al. 2006. Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part Ⅰ:Convective signals[J]. J. Climate, 19 (12):2665-2690, doi: 10.1175/jcli3735.1.
    Ling J, Li C Y, Jia X L. 2009. Impacts of cumulus momentum transport on MJO simulation[J]. Advances in Atmospheric Sciences, 26 (5):864-876, doi: 10.1007/s00376-009-8016-8.
    Ling J, Zhang C D. 2011. Structural evolution in heating profiles of the MJO in global reanalyses and TRMM retrievals[J]. J. Climate, 24 (3):825-842, doi: 10.1175/2010jcli3826.1.
    Madden R A, Julian P R. 1971. Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific[J]. J. Atmos. Sci., 28 (5):702-708, doi:10.1175/1520-0469(1971)028<0702:doadoi>;2.
    Madden R A, Julian P R. 1972. Description of global-scale circulation cells in the tropics with a 40-50 day period[J]. J. Atmos. Sci., 29 (6):1109-1123, doi:10.1175/1520-0469(1972)029<1109:dogscc>;2.
    Madden R A, Julian P R. 2012. Historical perspective[M]//Lau W K M, Waliser D E. Intraseasonal Variability in the Atmosphere-Ocean Climate System. Berlin Heidelberg:Springer, 1-18, doi:10.1007/3-540-27250-X_1.
    Maloney E D, Hartmann D L. 2001. The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization[J]. J. Climate, 14 (9):2015-2034, doi:10.1175/1520-0442(2001)014<2015:tsoivi>;2.
    Murakami H, Vecchi G A, Underwood S, et al. 2015. Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model[J]. J. Climate, 28 (23):9058-9079, doi: 10.1175/jcli-d-15-0216.1.
    Neale R B, Richter J H, Jochum M. 2008. The impact of convection on ENSO:From a delayed oscillator to a series of events[J]. J. Climate, 21 (22):5904-5924, doi: 10.1175/2008jcli2244.1.
    Pegion K, Kirtman B P. 2008. The impact of air-sea interactions on the predictability of the tropical intraseasonal oscillation[J]. J. Climate, 21 (22):5870-5886, doi: 10.1175/2008jcli2209.1.
    Richter J H, Rasch P J. 2008. Effects of convective momentum transport on the atmospheric circulation in the community atmosphere model, version 3[J]. J. Climate, 21 (7):1487-1499, doi: 10.1175/2007jcli1789.1.
    Rienecker M M, Suarez M J, Gelaro R, et al. 2011. MERRA:NASA's modern-era retrospective analysis for research and applications[J]. J. Climate, 24 (14):3624-3648, doi: 10.1175/jcli-d-11-00015.1.
    Seo K H, Wang W Q, Gottschalck J, et al. 2009. Evaluation of MJO forecast skill from several statistical and dynamical forecast models[J]. J. Climate, 22 (9):2372-2388, doi: 10.1175/2008jcli2421.1.
    Slingo J M, Sperber K R, Boyle J S, et al. 1996. Intraseasonal oscillations in 15 atmospheric general circulation models:Results from an AMIP diagnostic subproject[J]. Climate Dyn., 12 (5):325-357, doi: 10.1007/bf00231106.
    Su T H, Xue F, Zhang H. 2014. Simulating the intraseasonal variation of the East Asian summer monsoon by IAP AGCM4.0[J]. Advances in Atmospheric Sciences, 31 (3):570-580, doi: 10.1007/s00376-013-3029-8.
    孙泓川, 周广庆, 曾庆存. 2012. IAP第四代大气环流模式的耦合气候系统模式模拟性能评估[J].大气科学, 36 (2):215-233. doi: 10.3878/j.issn.1006-9895.2011.11062

    Sun Hongchuan, Zhou Guangqing, Zeng Qingcun. 2012. Assessments of the climate system model (CAS-ESM-C) using IAP AGCM 4 as its atmospheric component[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36 (2):215-233, doi: 10.3878/j.issn.1006-9895.2011.11062.
    Tiedtke M. 1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models[J]. Mon. Wea. Rev., 117 (8):1779-1800, doi:10.1175/1520-0493(1989)117<1779:acmfsf>;2.
    Tung W W, Gao J B, Hu J, et al. 2011. Detecting chaos in heavy-noise environments[J]. Physical Review E, 83 (4):046210, doi: 10.1103/physreve.83.046210.
    Vitart F, Woolnough S, Balmaseda M A, et al. 2007. Monthly forecast of the Madden-Julian oscillation using a coupled GCM[J]. Mon. Wea. Rev., 135 (7):2700-2715, doi: 10.1175/mwr3415.1.
    Waliser D, Sperber K, Hendon H, et al. 2009. MJO simulation diagnostics[J]. J. Climate, 22 (11):3006-3030, doi: 10.1175/2008jcli2731.1.
    Waliser D E, Lau K M, Kim J H. 1999. The influence of coupled sea surface temperatures on the Madden-Julian oscillation:A model perturbation experiment[J]. J. Atmos. Sci., 56 (3):333-358, doi:10.1175/1520-0469(1999)056<0333:tiocss>;2.
    Waliser D E, Zhang Z Z, Lau K M, et al. 2001. Interannual sea surface temperature variability and the predictability of tropical intraseasonal variability[J]. J. Atmos. Sci., 58 (17):2596-2615, doi:10.1175/1520-0469 (2001)058<2596:isstva>;2.
    Wang W Q, Schlesinger M E. 1999. The dependence on convection parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM[J]. J. Climate, 12 (5):1423-1457, doi:10.1175/1520-0442(1999)012<1423:tdocpo>;2.
    Wheeler M C, Hendon H H. 2004. An all-season real-time multivariate MJO index:Development of an index for monitoring and prediction[J]. Mon. Wea. Rev., 132 (8):1917-1932, doi:10.1175/1520-0493(2004)132<1917:aarmmi>;2.
    Woolnough S J, Vitart F, Balmaseda M A. 2007. The role of the ocean in the Madden-Julian oscillation:Implications for MJO prediction[J]. Quart. J. Roy. Meteor. Soc., 133 (622):117-128, doi: 10.1002/qj.4.
    Yan Z B, Lin Z H, Zhang H. 2014. The relationship between the East Asian subtropical westerly jet and summer precipitation over East Asia as simulated by the IAP AGCM4.0[J]. Atmospheric and Oceanic Science Letters, 7 (6):487-492, doi: 10.3878/AOSL20140048.
    晏正滨, 林朝晖, 张贺. 2015.大气环流模式IAP AGCM4.0对东亚高空副热带西风急流的模拟及偏差原因分析[J].气候与环境研究, 20 (4):393-410. doi: 10.3878/j.issn.1006-9585.2015.14095

    Yan Zhengbin, Lin Zhaohui, Zhang He. 2015. Evaluation and bias analysis for the performance of IAP AGCM4.0 in simulating the East Asian subtropical westerly jet[J]. Climatic and Environmental Research (in Chinese), 20 (4):393-410, doi: 10.3878/j.issn.1006-9585.2015.14095.
    曾庆存, 林朝晖. 2010.地球系统动力学模式和模拟研究的进展[J].地球科学进展, 25 (1):1-6. doi: 10.11867/j.issn.1001-8166.2010.01.0001

    Zeng Qingcun, Lin Zhaohui. 2010. Recent progress on the earth system dynamical model and its numerical simulations[J]. Advances in Earth Science (in Chinese), 25 (1):1-6, doi: 10.11867/j.issn.1001-8166.2010.01.0001.
    Zhang C D. 2005. Madden-Julian oscillation[J]. Rev. Geophys., 43 (2), doi: 10.1029/2004rg000158.
    Zhang C D. 2013. Madden-Julian oscillation:Bridging weather and climate[J]. Bull. Amer. Meteor. Soc., 94 (12):1849-1870, doi: 10.1175/bams-d-12-00026.1.
    Zhang G J, Mu M Q. 2005. Simulation of the Madden-Julian oscillation in the NCAR CCM3 using a revised Zhang-McFarlane convection parameterization scheme[J]. J. Climate, 18 (19):4046-4064, doi: 10.1175/jcli3508.1.
    Zhang G J, McFarlane N A. 1995. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model[J]. Atmos.-Ocean, 33 (3):407-446, doi:10. 1080/07055900.1995.9649539.
    张贺. 2009. 大气环流模式IAP AGCM4. 0的设计及其数值模拟[D]. 中国科学院大气物理研究所博士学位论文, 194pp.

    Zhang He. 2009. Development of IAP atmospheric general circulation model version 4.0 and its climate simulations[D]. Ph. D. dissertation (in Chinese), Institute of Atmospheric Physics, Chinese Academy of Sciences, 194pp.
    张贺, 林朝晖, 曾庆存. 2009. IAP AGCM-4动力框架的积分方案及模式检验[J].大气科学, 33 (6):1267-1285. doi: 10.3878/j.issn.1006-9895.2009.06.13

    Zhang He, Lin Zhaohui, Zeng Qingcun. 2009. The computational scheme and the test for dynamical framework of IAP AGCM-4[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33 (6):1267-1285, doi:10.3878/j.issn.1006-9895. 2009.06.13.
    张贺, 林朝晖, 曾庆存. 2011.大气环流模式中动力框架与物理过程的相互响应[J].气候与环境研究, 16 (1):15-30. doi: 10.3878/j.issn.1006-9585.2011.01.02

    Zhang He, Lin Zhaohui, Zeng Qingcun. 2011. The mutual response between dynamical core and physical parameterizations in atmospheric general circulation models[J]. Climatic and Environmental Research (in Chinese), 16 (1):15-30, doi: 10.3878/j.issn.1006-9585.2011.01.02.
    Zhang H, Zhang M H, Zeng Q C. 2013. Sensitivity of simulated climate to two atmospheric models:Interpretation of differences between dry models and moist models[J]. Mon. Wea. Rev., 141 (5):1558-1576, doi: 10.1175/mwr-d-11-00367.1.
    Zhang L N, Wang B Z, Zeng Q C. 2009. Impact of the Madden-Julian oscillation on summer rainfall in southeast China[J]. J. Climate, 22 (2):201-216, doi: 10.1175/2008jcli1959.1.
    Zhao C B, Ren H L, Song L C, et al. 2015. Madden-Julian oscillation simulated in BCC climate models[J]. Dyn. Atmos. Oceans, 72:88-101, doi: 10.1016/j.dynatmoce.2015.10.004.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (3792) PDF downloads(7954) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint