Advanced Search
Qinghan HUANG, Haishan CHEN, Wenjian HUA. Stronger Warming Amplification over Arid Ecoregions and Its Relationship to Vegetation Cover in China since 1982[J]. Climatic and Environmental Research, 2018, 23(1): 72-82. doi: 10.3878/j.issn.1006-9585.2016.16216
Citation: Qinghan HUANG, Haishan CHEN, Wenjian HUA. Stronger Warming Amplification over Arid Ecoregions and Its Relationship to Vegetation Cover in China since 1982[J]. Climatic and Environmental Research, 2018, 23(1): 72-82. doi: 10.3878/j.issn.1006-9585.2016.16216

Stronger Warming Amplification over Arid Ecoregions and Its Relationship to Vegetation Cover in China since 1982

doi: 10.3878/j.issn.1006-9585.2016.16216
Funds:

National Natural Science Foundation of China 41475083

National Natural Science Foundation of China 41625019

Natural Science Foundation of Jiangsu Province BK20160948

Natural Science Foundation for Higher Education Institutions in Jiangsu Province 16KJB170007

  • Received Date: 2016-12-09
    Available Online: 2017-06-22
  • Publish Date: 2018-01-20
  • To analyze vegetation variability and its relationship with summer air temperature variability in China, this study classifies various ecoregions based on the climatological Normalized Difference Vegetation Index (NDVI) values. Results show that there is a decreasing spatial distribution of vegetation from east to west in China. Arid ecoregions are the most obvious areas for summer warming since 1982. The warming rates over arid ecoregions for summer mean air temperature and mean maximum air temperature are 0.6-1.0℃/10 a and that for summer mean minimum air temperature is 0.8-1.4℃/10 a. Furthermore, summer air temperature variations have a significant negative correlation with vegetation conditions since 1982. In other words, the lower the vegetation greenness is, the stronger the warming trend is. It is worth noting that the negative correlation is most significant between mean minimum air temperature and vegetation conditions. In each ecoregion, the long-term trend of temperature is largely affected by changes in albedo and clouds. In the sparse vegetation regions, the increased albedo leads to a decrease in latent heat transport and increases the sensible heat flux, which intensifies the warming trend. In the dense vegetation regions, the decline in albedo leads to increases in evaporative cooling, which slows the rate of increase in the air temperature. Overall, vegetation activities play an important role in regional climate change, especially over the arid regions, where significant changes in surface radiation balance and energy flux amplify the rate of warming.
  • loading
  • [1]
    Beck H E, McVicar T R, van Dijk A I J M, et al. 2011. Global evaluation of four AVHRR-NDVI data sets:Intercomparison and assessment against landsat imagery[J]. Remote Sensing of Environment, 115 (10):2547-2563, doi: 10.1016/j.rse.2011.05.012.
    [2]
    Betts R A, Falloon P D, Goldewijk K K, et al. 2007. Biogeophysical effects of land use on climate:Model simulations of radiative forcing and large-scale temperature change[J]. Agricultural and Forest Meteorology, 142 (2-4):216-233, doi: 10.1016/j.agrformet.2006.08.021.
    [3]
    Cai D L, Fraedrich K, Sielmann F, et al. 2015. Vegetation dynamics on the Tibetan Plateau (1982-2006):An attribution by ecohydrological diagnostics[J]. J. Climate, 28 (11):4576-4584, doi: 10.1175/JCLI-D-14-00692.1.
    [4]
    Cai D L, Fraedrich K, Sielmann F, et al. 2016. Land-cover characterization and aridity changes of South America (1982-2006):An attribution by ecohydrological diagnostics[J]. J. Climate, 29 (22):8175-8189, doi: 10.1175/JCLI-D-16-0024.1.
    [5]
    陈海山, 倪东鸿, 李忠贤, 等. 2006.植被覆盖异常变化影响陆面状况的数值模拟[J].南京气象学院学报, 29 (6):725-734. doi: 10.3969/j.issn.1674-7097.2006.06.001

    Chen Haishan, Ni Donghong, Li Zhongxian, et al. 2006. Modeling of impacts of vegetation coverage change on land surface conditions[J]. Journal of Nanjing Institute of Meteorology (in Chinese), 29 (6):725-734, doi: 10.3969/j.issn.1674-7097.2006.06.001.
    [6]
    Chen H S, Zhang Y, Yu M, et al. 2016. Large-scale urbanization effects on eastern Asian summer monsoon circulation and climate[J]. Climate Dyn., 47 (1-2):117-136, doi: 10.1007/s00382-015-2827-3.
    [7]
    Cook K H, Vizy E K. 2015. Detection and analysis of an amplified warming of the Sahara desert[J]. J. Climate, 28 (16):6560-6580, doi: 10.1175/JCLI-D-14-00230.1.
    [8]
    Dai A G, Trenberth K E, Karl T R. 1999. Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range[J]. J. Climate, 12 (8):2451-2473, doi:10.1175/1520-0442(1999)012<2451:EOCSMP> 2.0.CO; 2.
    [9]
    Deng X Z, Zhao C H, Yan H M. 2013. Systematic modeling of impacts of land use and land cover changes on regional climate:A review[J]. Advances in Meteorology, 2013, 2013:317678, doi: 10.1155/2013/317678.
    [10]
    Friedl M A, Mciver D K, Hodges J C F, et al. 2002. Global land cover mapping from MODIS:Algorithms and early results[J]. Remote Sensing of Environment, 83 (1-2):287-302, doi: 10.1016/S0034-4257(02)00078-0.
    [11]
    Holben B N. 1986. Characteristics of maximum-value composite images from temporal AVHRR data[J]. Int. J. Remote Sens., 7 (11):1417-1434, doi: 10.1080/01431168608948945.
    [12]
    Hua W J, Chen H S. 2013. Impacts of regional-scale land use/land cover change on diurnal temperature range[J]. Advances in Climate Change Research, 4 (3):166-172, doi: 10.3724/SP.J.1248.2013.166.
    [13]
    华文剑, 陈海山. 2013.全球变暖背景下土地利用/土地覆盖变化气候效应的新认识[J].科学通报, 58 (27):2832-2839. doi: 10.1007/s11434-013-5902-3

    Hua Wenjian, Chen Haishan. 2013. Recognition of climatic effects of land use/land cover change under global warming[J]. Chinese Science Bulletin (in Chinese), 58 (31):3852-3858, doi: 10.1007/s11434-013-5902-3.
    [14]
    华文剑, 陈海山, 李兴. 2014.中国土地利用/覆盖变化及其气候效应的研究综述[J].地球科学进展, 29 (9):1025-1036. doi: 10.11867/j.issn.1001-8166.2014.09.1025

    Hua Wenjian, Chen Haishan, Li Xing. 2014. Review of land use and land cover change in China and associated climatic effects[J]. Advances in Earth Science (in Chinese), 29 (9):1025-1036, doi: 10.11867/j.issn.1001-8166.2014.09.1025.
    [15]
    Hua W J, Chen H S, Li X. 2015a. Effects of future land use change on the regional climate in China[J]. Science China Earth Sciences, 58 (10):1840-1848, doi: 10.1007/s11430-015-5082-x.
    [16]
    Hua W J, Chen H S, Sun S L, et al. 2015b. Assessing climatic impacts of future land use and land cover change projected with the CanESM2 model[J]. International Journal of Climatology, 35 (12):3661-3675, doi: 10.1002/joc.4240.
    [17]
    Hua W J, Chen H S, Zhou L M, et al. 2017. Observational quantification of climatic and human influences on vegetation greening in China[J]. Remote Sensing, 9 (5):425, doi: 10.3390/rs9050425.
    [18]
    Huang Y, Dickinson R E, Chameides W L. 2006. Impact of aerosol indirect effect on surface temperature over East Asia[J]. Proceedings of the National Academy of Sciences of the United States of America, 103 (12):4371-4376, doi: 10.1073/pnas.0504428103.
    [19]
    Idso S B, Jackson R D, Reginato R J, et al. 1975. The dependence of bare soil albedo on soil water content[J]. J. Appl. Meteor., 14 (1):109-113, doi:10.1175/1520-0450(1975)014<0109:TDOBSA>2.0.CO; 2.
    [20]
    IPCC. 2013. Climate Change 2013:The Physical Science Basis:Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press.
    [21]
    Jeong S J, Ho C H, Jeong J H. 2009. Increase in vegetation greenness and decrease in springtime warming over East Asia[J]. Geophys. Res. Lett., 36 (2):436-448, doi: 10.1029/2008GL036583.
    [22]
    Karl T R, Knight R W, Gallo K P, et al. 1993. A new perspective on recent global warming:Asymmetric trends of daily maximum and minimum temperature[J]. Bull. Amer. Meteor. Soc., 77 (6):279-292, doi:10.1175/1520-0477(1993)074<1007:ANPORG>2.0.CO; 2.
    [23]
    Knorr W, Schnitzler K G, Govaerts Y. 2001. The role of bright desert regions in shaping North African climate[J]. Geophys. Res. Lett., 28 (18):3489-3492, doi: 10.1029/2001GL013283.
    [24]
    Li F, Zeng X D, Song X, et al. 2011. Impact of spin-up forcing on vegetation states simulated by a dynamic global vegetation model coupled with a land surface model[J]. Advances in Atmospheric Sciences, 28 (4):775-788, doi: 10.1007/s00376-010-0009-0.
    [25]
    李巧萍, 丁一汇. 2004.植被覆盖变化对区域气候影响的研究进展[J].南京气象学院学报, 27 (1):131-140. doi: 10.3969/j.issn.1674-7097.2004.01.018

    Li Qiaoping, Ding Yihui. 2004. Research progress in the effect of vegetation change on regional climate[J]. Journal of Nanjing Institute of Meteorology (in Chinese), 27 (1):131-140, doi: 10.3969/j.issn.1674-7097.2004.01.018.
    [26]
    Lim Y K, Cai M, Kalnay E, et al. 2005. Observational evidence of sensitivity of surface climate changes to land types and urbanization[J]. Geophys. Res. Lett., 322 (22):L22712, doi: 10.1029/2005GL024267.
    [27]
    Liu N F, Liu Q, Wang L Z, et al. 2013a. A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data[J]. Hydrology & Earth System Sciences, 17 (6):2121-2129, doi: 10.5194/hess-17-2121-2013.
    [28]
    Liu Q, Wang L Z, Qu Y, et al. 2013b. Preliminary evaluation of the long-term GLASS albedo product[J]. International Journal of Digital Earth, 6 (S1):69-95, doi: 10.1080/17538947.2013.804601.
    [29]
    Lü Y H, Zhang L W, Feng X M, et al. 2015. Recent ecological transitions in China:Greening, browning, and influential factors[J]. Scientific Reports, 5:8732, doi: 10.1038/srep08732.
    [30]
    Nicholson S E, Tucker C J, Ba M B. 1998. Desertification, drought, and surface vegetation:An example from the West African Sahel[J]. Bull. Amer. Meteor. Soc., 79 (5):815-829, doi:10.1175/1520-0477(1998)079<0815:DDASVA>2.0.CO; 2.
    [31]
    Pettorelli N, Vik J O, Mysterud A, et al. 2005. Using the satellite-derived NDVI to assess ecological responses to environmental change[J]. Trends in Ecology & Evolution, 20 (9):503-510, doi: 10.1016/j.tree.2005.05.011.
    [32]
    Piao S, Nan H, Huntingford C, et al. 2014. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity[J]. Nature Communications, 5:5018, doi: 10.1038/ncomms6018.
    [33]
    Qu Y, Liu Q, Liang S L, et al. 2014. Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data[J]. IEEE Trans. Geosci. Remote Sens., 52 (2):907-919, doi:10.1109/TGRS. 2013.2245670.
    [34]
    冉津江, 季明霞, 黄建平, 等. 2014.中国干旱半干旱地区的冷季快速增温[J].高原气象, 33 (4):947-956. doi: 10.7522/j.issn.1000-0534.2013.00065

    Ran Jinjiang, Ji Mingxia, Huang Jianping, et al. 2014. Enhanced cold-season warming in arid and semi-arid regions of China[J]. Plateau Meteorology (in Chinese), 33 (4):947-956. doi: 10.7522/j.issn.1000-0534.2013.00065
    [35]
    Salisbury J W, D'Aria D M. 1992. Emissivity of terrestrial materials in the 8-14 μm atmospheric window[J]. Remote sensing of Environment, 42 (2):83-106, doi: 10.1016/0034-4257(92)90092-X.
    [36]
    Shen M G, Piao S L, Jeong S J, et al. 2015. Evaporative cooling over the Tibetan Plateau induced by vegetation growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 112 (30):9299-9304, doi: 10.1073/pnas.1504418112.
    [37]
    Stone D, Weaver A. 2003. Factors contributing to diurnal temperature range trends in twentieth and twenty-first century simulations of the CCCma coupled model[J]. Climate Dyn., 20 (5):435-445, doi: 10.1007/s00382-002-0288-y.
    [38]
    Teuling A J, Loon A F V, Seneviratne S I, et al. 2013. Evapotranspiration amplifies European summer drought[J]. Geophys. Res. Lett., 40 (10):2071-2075, doi: 10.1002/grl.50495.
    [39]
    Tucker C J, Pinzon J E, Brown M E, et al. 2005. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data[J]. Int. J. Remote Sens., 26 (20):4485-4498, doi: 10.1080/01431160500168686.
    [40]
    University of East Anglia Climatic Research Unit, Jones P D, Harris I C. 2008. Climatic Research Unit (CRU) time-series datasets of variations in climate with variations in other phenomena[R]. NCAS British Atmospheric Data Centre.
    [41]
    Urai M, Matsunaga T, Ishii T. 1997. Relationship between soil moisture content and thermal infrared emissivity of the sand sampled in Muus Desert, China[J]. Journal of the Remote Sensing Society of Japan, 17 (4):322-331, doi: 10.11440/rssj1981.17.322.
    [42]
    Wendler G, Eaton F. 1983. On the desertification of the Sahel zone[J]. Climatic Change, 5 (4):365-380, doi: 10.1007/BF02423531.
    [43]
    Yu M, Wang G L, Pal J S. 2016. Effects of vegetation feedback on future climate change over West Africa[J]. Climate Dyn., 46 (11-12):3669-3688, doi: 10.1007/s00382-015-2795-7.
    [44]
    Zeng N, Dickinson R E, Zeng X B. 1996. Climatic impact of Amazon deforestation-A mechanistic model study[J]. J. Climate, 9 (4):859-883, doi:10.1175/1520-0442(1996)009<0859:CIOADM>2.0.CO; 2.
    [45]
    Zheng X Y, Eltahir E A B. 1998. The role of vegetation in the dynamics of West African monsoons[J]. J. Climate, 11 (8):2078-2096, doi: 10.1175/1520-0442-11.8.2078.
    [46]
    Zhou L, Dickinson R E, Tian Y, et al. 2003. A sensitivity study of climate and energy balance simulations with use of satellite-derived emissivity data over Northern Africa and the Arabian Peninsula[J]. J. Geophys. Res., 108 (D24):4795, doi: 10.1029/2003JD004083.
    [47]
    Zhou L M, Dickinson R E, Tian Y H, et al. 2007. Impact of vegetation removal and soil aridation on diurnal temperature range in a semiarid region:Application to the Sahel[J]. Proceedings of the National Academy of Sciences of the United States of America, 104 (46):17937-17942, doi: 10.1073/pnas.0700290104.
    [48]
    Zhou L M, Dai A G, Dai Y J, et al. 2009. Spatial dependence of diurnal temperature range trends on precipitation from 1950 to 2004[J]. Climate Dyn., 32 (2-3):429-440, doi: 10.1007/s00382-008-0387-5.
    [49]
    Zhou L M, Dickinson R E, Dai A G, et al. 2010. Detection and attribution of anthropogenic forcing to diurnal temperature range changes from 1950 to 1999:Comparing multi-model simulations with observations[J]. Climate Dyn., 35 (7-8):1289-1307, doi: 10.1007/s00382-009-0644-2.
    [50]
    Zhou L M, Chen H S, Dai Y J. 2015. Stronger warming amplification over drier ecoregions observed since 1979[J]. Environmental Research Letters, 10 (6):064012, doi: 10.1088/1748-9326/10/6/064012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (1329) PDF downloads(1629) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return