Advanced Search
Yonggang MA, Yue HUANG. Interannual and Seasonal Trend Analysis of Vegetation Condition in Xinjiang Based on 1982-2013 NDVI Data[J]. Climatic and Environmental Research, 2018, 23(1): 26-36. doi: 10.3878/j.issn.1006-9585.2017.16116
Citation: Yonggang MA, Yue HUANG. Interannual and Seasonal Trend Analysis of Vegetation Condition in Xinjiang Based on 1982-2013 NDVI Data[J]. Climatic and Environmental Research, 2018, 23(1): 26-36. doi: 10.3878/j.issn.1006-9585.2017.16116

Interannual and Seasonal Trend Analysis of Vegetation Condition in Xinjiang Based on 1982-2013 NDVI Data

doi: 10.3878/j.issn.1006-9585.2017.16116

National Natural Science Foundation of China U1503183

Youth Science and Technology Innovation Talents Project of Xinjiang Uygur Autonomous 2013731013

Natural Science Foundation of Xinjiang Uygur Autonomous Region 2015211B028

  • Received Date: 2016-06-14
    Available Online: 2017-03-17
  • Publish Date: 2018-01-20
  • Based on GIMMS 3g (the third generation Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index) data, three preprocessing methods including monthly aggregation, standard anomaly computation, and trend-preserving prewhitening were used to develop six data series. Seasonal trend analysis was applied to extract three seasonal representative factors, i.e. amplitude 0, amplitude 1, and phase 1 to detect the characteristic of seasonal trend. The interannual and seasonal trend analysis was conducted using CMK (Contextual Mann-Kendall) and MK (Mann-Kendall) trend test methods. Land use and cover data was used as an accessory to identify spatial distribution pattern of areas with significant changes. The difference between preprocessing method and trend test method was also discussed. The result shows that:(1) The proportional area of vegetation deterioration is higher than the proportional area of vegetation improvement; the former is mainly located at areas of unused lands and grasslands, and the latter is found over grasslands, unused lands and farmlands. (2) The amplitudes of annual variability show a significant increasing trend mainly over grasslands, unused lands and farmlands in the southern margin of the Tarim basin. (3) Different preprocessing methods have obvious impacts on the result of trend analysis. According to the ability of these methods to extract significant trend information, they are in the sequence of standard anomaly > trend-preserving prewhiting > original data > monthly aggregate. (4) 87.88% of farmlands demonstrates a significant increase trend in annual variation amplitude and 53.31% of farmlands shows a significant trend of delayed onset of growing season.
  • loading
  • [1]
    杜加强, 贾尔恒·阿哈提, 赵晨曦, 等. 2015. 1982~2012年新疆植被NDVI的动态变化及其对气候变化和人类活动的响应[J].应用生态学报, 26 (12):3567-3578.

    Du Jiaqiang, Jiaerheng Ahati, Zhao Chenxi, et al. 2015. Dynamic changes in vegetation NDVI from 1982 to 2012 and its responses to climate change and human activities in Xinjiang, China[J]. Chinese Journal of Applied Ecology (in Chinese), 26 (12):3567-3578.
    Eastman J, Sangermano F, Ghimire B, et al. 2009. Seasonal trend analysis of image time series[J]. Int. J. Remote Sens., 30 (10):2721-2726, doi: 10.1080/01431160902755338.
    Eastman J, Sangermano F, Machado E, et al. 2013. Global trends in seasonality of Normalized Difference Vegetation Index (NDVI), 1982-2011[J]. Remote Sensing, 5 (10):4799-4818, doi: 10.3390/rs5104799.
    国志兴, 张晓宁, 王宗明, 等. 2010.东北地区植被物候对气候变化的响应[J].生态学杂志, 29 (3):578-585.

    Guo Zhixing, Zhang Xiaoning, Wang Zongming, et al. 2010. Responses of vegetation phenology in Northeast China to climate change[J]. Chinese Journal of Ecology (in Chinese), 29 (3):578-585.
    Julien Y, Sobrino J A, Verhoef W. 2006. Changes in land surface temperatures and NDVI values over Europe between 1982 and 1999[J]. Remote Sens. Environ., 103 (1):43-55, doi: 10.1016/j.rse.2006.03.011
    Kucharik C J, Barford C C, Maayar M E, et al. 2006. A multiyear evaluation of a dynamic global vegetation model at three AmeriFlux forest sites:Vegetation structure, phenology, soil temperature, and CO2 and H2O vapor exchange[J]. Ecological Modelling, 196 (1-2):1-31, doi: 10.1016/j.ecolmodel.2005.11.031.
    刘洋, 李诚志, 刘志辉, 等. 2016. 1982~2013年基于GIMMS-NDVI的新疆植被覆盖时空变化[J].生态学报, 36 (19):6198-6208.

    Liu Yang, Li Chengzhi, Liu Zhihui, et al. 2016. Assessment of spatio-temporal variations in vegetation cover in Xinjiang from 1982-2013 based on GIMMS-NDVI[J]. Acta Ecological Sinica (in Chinese), 36 (19):6198-6208.
    马勇刚, 张弛, 塔西甫拉提·特依拜. 2014.中亚及中国新疆干旱区植被物候时空变化[J].气候变化研究进展, 10 (2):95-102. doi: 10.3969/j.issn.1673-1719.2014.02.003.0

    Ma Yonggang, Zhang Chi, Tiyip Tashpolat. 2014. Spatial-temporal change of vegetation phenology in arod zone of central Asia and Xinjiang, China[J]. Progressus Inquisitiones De Mutatione Climatis (in Chinese), 10 (2):95-102, doi: 10.3969/j.issn.1673-1719.2014.02.003.0
    Neeti N, Ronald Eastman R. 2011. A contextual Mann-Kendall approach for the assessment of trend significance in image time series[J]. Transactions in Gis, 15 (5):599-611, doi: 10.1111/j.1467-9671.2011.01280.x.
    Sen P K. 1968. Estimates of the regression coefficient based on Kendall's Tau[J]. Journal of the American Statistical Association, 63 (324):1379-1389, doi: 10.1080/01621459.1968.10480934.
    Wang X L, Swail V R. 2001. Changes of extreme wave heights in Northern Hemisphere oceans and related atmospheric circulation regimes[J]. J. Climate, 14 (10):2204-2221, doi:10.1175/1520-0442(2001)014<2204:COEWHI>2.0.CO; 2.
    王智, 师庆三, 王涛, 等. 2011. 1982~2006年新疆山地-绿洲-荒漠系统植被覆盖变化时空特征[J].自然资源学报, 26 (4):609-618. doi: 10.11849/zrzyxb.2011.04.007

    Wang Zhi, Shi Qingsan, Wang Tao, et al. 2011. Spatial-temporal characteristics of vegetation cover change in mountain-oasis-desert system of Xinjiang from 1982-2006[J]. Journal of Natural Resources (in Chinese), 26 (4):609-618. doi: 10.11849/zrzyxb.2011.04.007
    许玉凤, 杨井, 陈亚宁, 等. 2015.近32年来新疆地区植被覆盖的时空变化[J].草业科学, 32 (5):702-709. doi: 10.11829/j.issn.1001-0629.2014-0413

    Xu Yufeng, Yang Jing, Chen Yaning, et al. 2015. The spatial-temporal variation of vegetation cover in Xinjiang from 1982-2013[J]. Pratacultural Science (in Chinese), 32 (5):702-709, doi: 10.11829/j.issn.1001-0629.2014-0413.
    许玉凤, 杨井, 李卫红, 等. 2016. 1982~2013年新疆不同植被生长时空变化[J].草业学报, 25 (1):47-63. doi: 10.11686/cyxb2015073

    Xu Yufeng, Yang Jing, Li Weihong, et al. 2016. Spatia-temporal change in different vegetation growth of Xinjiang from 1982 to 2013[J]. Acra Prataculturae Sinica (in Chinese), 25 (1):47-63. doi: 10.11686/cyxb2015073
    杨光华, 包安明, 陈曦, 等. 2009. 1998~2007年新疆植被覆盖变化及驱动因素分析[J].冰川冻土, 31 (3):436-445.
    Yang Guanghua, Bao Anming, Chen Xi, et al. Study of the vegetation cover change and its driving factors over Xinjiang during 1998-2007[J]. Journal of Glaciology and Geocryology (in Chinese), 31 (3):436-445.
    Yue S, Wang C Y. 2002. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test[J]. Water Resour. Res., 38 (6):4-1-4-7, doi: 10.1029/2001WR000861.
    赵霞, 谭琨, 方精云. 2011. 1982~2006年新疆植被活动的年际变化及其季节差异[J].干旱区研究, 28 (1):10-16.

    Zhao Xia, Tan Kun, Fang Jingyun. 2011. NDVI-base interannual and seasonal variations of vegetation activity in Xinjiang during the period of 1982-2006[J]. Arid Zone Research (in Chinese), 28 (1):10-16.
    周梦甜, 李军, 朱康文. 2015.近15 a新疆不同类型植被NDVI时空动态变化及对气候变化的响应[J].干旱区地理, 38 (4):779-787.

    Zhou Mengtian, Li Jun, Zhu Kangwen. 2015. Spatial-temporal dynamic of different types of vegetation NDVI and its response to climate change in Xinjiang during 1998-2013[J]. Arid Land Geography (in Chinese), 38(4):779-787.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (1330) PDF downloads(1370) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint