Advanced Search
Hongjie ZHANG, Liang WU, Ronghui HUANG. Possible Impacts of Two Types of El Niño Events on the Western North Pacific Monsoon Trough and Tropical Cyclogenesis[J]. Climatic and Environmental Research, 2018, 23(2): 150-160. doi: 10.3878/j.issn.1006-9585.2017.17055
Citation: Hongjie ZHANG, Liang WU, Ronghui HUANG. Possible Impacts of Two Types of El Niño Events on the Western North Pacific Monsoon Trough and Tropical Cyclogenesis[J]. Climatic and Environmental Research, 2018, 23(2): 150-160. doi: 10.3878/j.issn.1006-9585.2017.17055

Possible Impacts of Two Types of El Niño Events on the Western North Pacific Monsoon Trough and Tropical Cyclogenesis

doi: 10.3878/j.issn.1006-9585.2017.17055
Funds:

National Natural Science Foundation of China 41475077

National Natural Science Foundation of China 41461164005

National Natural Science Foundation of China 41375065

National Basic Research Program of China 2014CB953900

the Youth Innovation Promotion Association of Chinese Academy of Sciences 2017106

  • Received Date: 2017-03-29
    Available Online: 2017-05-08
  • Publish Date: 2018-03-20
  • The present study analyzes the monsoon trough and tropical cyclone (TC) genesis over the western North Pacific to preliminarily investigate the anomalous monsoon trough and its possible effect on TCs during different types of El Niño events for the period of 1948-2015. It is shown that, compared with that in the eastern Pacific warming (EPW) years, the monsoon trough is weaker and its position leans toward the west and north during the central Pacific warming (CPW) years. In these years, the warmer (cooler) sea surface temperature (SST) over the central (western and eastern) Pacific induces anomalous westerly winds from the central to western Pacific in the tropical region and stronger than normal ascending motions and convective activities over the central Pacific, which can induce a strengthened and eastward extending monsoon trough. Meanwhile, the western Pacific subtropical high is weaker than normal and shifted northward, which leads to the northward displacement of monsoon trough. During EPW years, however, warmer (cooler) SSTs occur over the eastern (western) equatorial Pacific; anomalous westerly winds significantly extend eastward in the tropics; the ascending branch of the anomalous Walker circulation shifts eastward to the eastern Pacific; the monsoon activity becomes stronger; the subtropical high intensifies and leans toward the south. All the above changes are favorable for a stronger monsoon trough that extends more eastward compared to that in CPW years. Further study reveals that large-scale environmental factors that are related to TCs genesis will change with variations in the intensity and position of the monsoon trough. During CPW years, the cyclonic vorticity in the lower troposphere, the divergence in the upper-level, the higher relative humidity in the middle troposphere and the lower vertical wind shear all move toward the north with the monsoon trough. In EPW years, the above factors follow the monsoon trough to move southward and westward. These changes prompt the location of TC genesis over the western North Pacific to lean northward and eastward compared to that in EPW years.
  • loading
  • [1]
    Ashok K, Behera S K, Rao S A, et al. 2007. El Niño Modoki and its possible teleconnection[J]. J. Geophys. Res.:Oceans, 112 (C11):C11007, doi: 10.1029/2006JC003798.
    [2]
    Ashok K, Yamagata T. 2009. Climate change:The El Niño with a difference[J]. Nature, 461 (7263):481-484, doi: 10.1038/461481a.
    [3]
    Bjerknes J. 1969. Atmospheric teleconnections from the Equatorial Pacific[J]. Mon. Wea. Rev., 97 (3):163-172, doi:10.1175/1520-0493(1969) 097<0163:ATFTEP>2.3.CO;2.
    [4]
    Camargo S J, Sobel A H. 2005. Western North Pacific tropical cyclone intensity and ENSO[J]. J. Climate, 18 (15):2996-3006, doi: 10.1175/JCLI3457.1.
    [5]
    Chan J C L. 2000. Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events[J]. J. Climate, 13 (16):2960-2972, doi:10.1175/1520-0442(2000)013<2960:TCAOTW>2.0.CO;2.
    [6]
    Chan J C L, Liu K S. 2004. Global warming and western North Pacific typhoon activity from an observational perspective[J]. J. Climate, 17 (23):4590-4602, doi: 10.1175/3240.1.
    [7]
    Chen G H, Tam C Y. 2010. Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific[J]. Geophys. Res. Lett., 37 (1):L01803, doi: 10.1029/2009GL041708.
    [8]
    Chen T C, Weng S P, Yamazaki N, et al. 1998. Interannual variation in the tropical cyclone formation over the western North Pacific[J]. Mon. Wea. Rev., 126 (4):1080-1090, doi:10.1175/1520-0493(1998)126<1080:IVITTC>2.0.CO;2.
    [9]
    Chen T C, Wang S Y, Yen M C. 2006. Interannual variation of the tropical cyclone activity over the western North Pacific[J]. J. Climate, 19 (21):5709-5720, doi: 10.1175/JCLI3934.1.
    [10]
    Cheung K K W. 2004. Large-scale environmental parameters associated with tropical cyclone formations in the western North Pacific[J]. J. Climate, 17 (3):466-484, doi:10.1175/1520-0442(2004)017<0466:LEPAWT>2.0.CO;2.
    [11]
    Chia H H, Ropelewski C F. 2002. The interannual variability in the genesis location of tropical cyclones in the northwest Pacific[J]. J. Climate, 15 (20):2934-2944, doi:10.1175/1520-0442(2002)015<2934:TIVITG>2.0.CO;2.
    [12]
    Feng J, Wang L, Chen W, et al. 2010. Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter[J]. J. Geophys. Res.:Atmos., 115 (D24):D24122, doi: 10.1029/2010JD014761.
    [13]
    冯涛, 黄荣辉, 陈光华, 等. 2013.近年来关于西北太平洋热带气旋和台风活动的气候学研究进展[J].大气科学, 37 (2):364-382. doi: 10.3878/j.issn.1006-9895.2012.12307

    Feng Tao, Huang Ronghui, Chen Guanghua, et al. 2013. Progress in recent climatological research on tropical cyclone activity over the western North Pacific[J]. Chinese Journal of Atomspheric Sciences (in Chinese), 37 (2):364-382, doi: 10.3878/j.issn.1006-9895.2012.12307.
    [14]
    Feng T, Chen G H, Huang R H, et al. 2014. Large-scale circulation patterns favourable to tropical cyclogenesis over the western North Pacific and associated barotropic energy conversions[J]. International Journal of Climatology, 34 (1):216-227, doi: 10.1002/joc.3680.
    [15]
    冯涛, 黄荣辉, 杨修群, 等. 2016. 2004年与2006年7~9月西北太平洋上空大尺度环流场与天气尺度波动的差别及其对热带气旋生成的影响[J].大气科学, 40 (1):157-175. doi: 10.3878/j.issn.1006-9895.1505.14162

    Feng Tao, Huang Ronghui, Yang Xiuqun, et al. 2016. Differences between the large-scale circulations and synoptic-scale waves in July-September 2004 and those in 2006 and their impacts on tropical cyclogenesis over the western North Pacific[J]. Chinese Journal of Atomspheric Sciences (in Chinese), 40 (1):157-175, doi: 10.3878/j.issn.1006-9895.1505.14162.
    [16]
    Frank W M. 1987. Tropical cyclone formation. A global view of tropical cyclones[M]. Elberry R L, Ed., Office of Naval Research, 53-90.
    [17]
    高建芸, 张秀芝, 江志红, 等. 2008.西北太平洋季风槽异常与热带气旋活动[J].海洋学报, 30 (3):35-47. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hyxb200803005

    Gao Jianyun, Zhang Xiuzhi, Jiang Zhihong, et al. 2008. Anomalous western North Pacific monsoon trough and tropical cyclone activities[J]. Acta Oceanologica Sinica (in Chinese), 30 (3):35-47. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hyxb200803005
    [18]
    Gray W M. 1979. Hurricanes: Their formation, structure and likely role in the tropical circulation[C]//Meteorology over the Tropical Oceans. Bracknell, UK: Royal Meteorological Society, 155-218.
    [19]
    Hong C C, Li Y H, Li T, et al. 2011. Impacts of central Pacific and eastern Pacific El Niños on tropical cyclone tracks over the western North Pacific[J]. Geophys. Res. Lett., 38 (16):L16712, doi: 10.1029/2011GL048821.
    [20]
    黄荣辉, 傅云飞, 臧晓云. 1996.亚洲季风与ENSO循环的相互作用[J].气候与环境研究, 1 (1):38-54. doi: 10.3878/j.issn.1006-9585.1996.01.05

    Huang Ronghui, Fu Yunfei, Zhan Xiaoyun. 1996. Asian monsoon and ENSO cycle interaction[J]. Climatic and Environmental Research (in Chinese), 1 (1):38-54, doi: 10.3878/j.issn.1006-9585.1996.01.05.
    [21]
    黄荣辉, 陈文. 2002.关于亚洲季风与ENSO循环相互作用研究最近的进展[J].气候与环境研究, 7 (2):146-159. doi: 10.3878/j.issn.1006-9585.2002.02.03

    Huang Ronghui, Chen Wen. 2002. Recent progresses in the research on the interaction between Asian monsoon and ENSO cycle[J]. Climatic and Environmental Research (in Chinese), 7 (2):146-159, doi: 10.3878/j.issn.1006-9585.2002.02.03.
    [22]
    黄荣辉, 陈光华. 2007.西北太平洋热带气旋移动路径的年际变化及其机理研究[J].气象学报, 65 (5):683-694. doi: 10.11676/qxxb2007.064

    Huang Ronghui, Chen Guanghua. 2007. Research on interannual variations of tracks of tropical cyclones over Northwest Pacific and their physical mechanism[J]. Acta Meteorologica Sinica (in Chinese), 65 (5):683-694, doi: 10.11676/qxxb2007.064.
    [23]
    Huang R H, Chen J L, Wang L, et al. 2012. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system[J]. Advances in Atmospheric Sciences, 29 (5):910-942, doi: 10.1007/s00376-012-2015-x.
    [24]
    黄荣辉, 皇甫静亮, 武亮, 等. 2016.关于西北太平洋季风槽年际和年代际变异及其对热带气旋生成影响和机理的研究[J].热带气象学报, 32 (6):767-785. https://www.cnki.com.cn/qikan-RDQX201606001.html

    Huang Ronghui, Huangfu Jingliang, Wu Liang, et al. 2016. Research on the interannual and interdecadal variabilities of the monsoon trough and their impacts on tropical cyclone genesis over the western North Pacific[J]. Journal of Tropical Meteorology (in Chinese), 32 (6):767-785. https://www.cnki.com.cn/qikan-RDQX201606001.html
    [25]
    Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project[J]. Bull. Amer. Meteor. Soc., 77 (3):437-471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
    [26]
    Kim H M, Webster P J, Curry J A. 2009. Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones[J]. Science, 325 (5936):77-80, doi: 10.1126/science.1174062.
    [27]
    Knapp K R, Kruk M C, Levinson D H, et al. 2010. The international best track archive for climate stewardship (IBTrACS) unifying tropical cyclone data[J]. Bull. Amer. Meteor. Soc., 91 (3):363-376, doi: 10.1175/2009BAMS2755.1.
    [28]
    Lee T, McPhaden M J. 2010. Increasing intensity of El Niño in the central-equatorial Pacific[J]. Geophys. Res. Lett., 37 (14):L14603, doi: 10.1029/2010GL044007.
    [29]
    Liebmann B, Smith C A. 1996. Description of a complete (interpolated) outgoing longwave radiation dataset[J]. Bull. Amer. Meteor. Soc., 77:1275-1277. http://citeseerx.ist.psu.edu/showciting?cid=2773917
    [30]
    McBride J L. 1995. Tropical cyclone formation[C]//Global Perspectives on Tropical Cyclones. World Meteorological Organization, 63-105.
    [31]
    Molinari J, Vollaro D. 2013. What percentage of western North Pacific tropical cyclones form within the monsoon trough?[J]. Mon. Wea. Rev., 141 (2):499-505, doi: 10.1175/MWR-D-12-00165.1.
    [32]
    Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. J. Geophys. Res.:Atmos., 108 (D14):4407, doi: 10.1029/2002JD002670.
    [33]
    Wang C Z, Li C X, Mu M, et al. 2013. Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific[J]. Climate Dyn., 40 (11-12):2887-2902, doi: 10.1007/s00382-012-1434-9.
    [34]
    王慧, 丁一汇, 何金海. 2006.西北太平洋夏季风的变化对台风生成的影响[J].气象学报, 64 (3):345-356. doi: 10.11676/qxxb2006.033

    Wang Hui, Ding Yihui, He Jinhai. 2006. Influence of western North Pacific summer monsoon changes on typhoon genesis[J]. Acta Meteorologica Sinica (in Chinese), 64 (3):345-356, doi: 10.11676/qxxb2006.033.
    [35]
    Wu L, Wen Z P, Huang R H. 2011. A primary study of the correlation between the net air-sea heat flux and the interannual variation of western North Pacific tropical cyclone track and intensity[J]. Acta Oceanologica Sinica, 30 (6):27-35, doi: 10.1007/s13131-011-0158-8.
    [36]
    Wu L, Wen Z P, Huang R H, et al. 2012. Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific[J]. Mon. Wea. Rev., 140 (1):140-150, doi: 10.1175/MWR-D-11-00078.1.
    [37]
    Wu L, Chou C, Chen C T, et al. 2014. Simulations of the present and late-twenty-first-century western North Pacific tropical cyclone activity using a regional model[J]. J. Climate, 27 (9):3405-3424, doi: 10.1175/JCLI-D-12-00830.1.
    [38]
    Yeh S W, Kug J S, Dewitte B, et al. 2009. El Niño in a changing climate[J]. Nature, 461 (7263):511-514, doi: 10.1038/nature08316.
    [39]
    张翔, 武亮, 皇甫静亮, 等. 2017.西北太平洋季风槽的季节和年际变化特征及其与热带气旋生成大尺度环境因子的联系[J].气候与环境研究, 22 (4):418-434. doi: 10.3878/j.issn.1006-9585.2016.16065

    Zhang Xiang, Wu Liang, Huangfu Jingliang, et al. 2017. Seasonal and interannual variability of the western North Pacific monsoon trough and its relationship to lage-scale environmental factors[J]. Climatic and Environmental Research (in Chinese), 22 (4):418-434, doi: 10.3878/j.issn.1006-9585.2016.16065.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (1291) PDF downloads(1494) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return