Advanced Search
Cheng QIAN, Zhongwei YAN, Lijuan CAO, Zhen LI. Climatic Changes in the Twenty-Four Solar Terms Based on Temperature Observations Back to 1873[J]. Climatic and Environmental Research, 2018, 23(6): 670-682. doi: 10.3878/j.issn.1006-9585.2018.18044
Citation: Cheng QIAN, Zhongwei YAN, Lijuan CAO, Zhen LI. Climatic Changes in the Twenty-Four Solar Terms Based on Temperature Observations Back to 1873[J]. Climatic and Environmental Research, 2018, 23(6): 670-682. doi: 10.3878/j.issn.1006-9585.2018.18044

Climatic Changes in the Twenty-Four Solar Terms Based on Temperature Observations Back to 1873

doi: 10.3878/j.issn.1006-9585.2018.18044
Funds:

National Key Research and Development Program of China 2016YFA0600404

National Key Research and Development Program of China 2017YFC1501801

National Natural Science Foundation of China 41675093

Bureau of International Co-operation Chinese Academy of Sciences 134111KYSB20160010

the Youth Innovation Promotion Association of Chinese Academy of Sciences 2016075

  • Received Date: 2018-03-16
    Available Online: 2018-05-28
  • Publish Date: 2018-11-20
  • Twenty-four Solar Terms (24STs) have been widely used for guiding human activities in China over more than 2000 years. However, the implication of the conventional 24STs has been changing under global warming. The climatic 24STs proposed recently impose a time-varying characteristic on the conventional 24STs, thus they can better serve as guidance for people under current situation. Previous studies only focused on linear trend of the 24STs since 1960. In this study, climatic changes in the 24STs back to 1873 are analyzed based on homogenized daily temperature series at Beijing station for the period 1940-2017 and at Shanghai station for the period 1873-2017. The results show that the annual mean temperature as well as temperatures of the 24STs at Beijing station for the period 1941-2016 and at Shanghai station for the period 1874-2016 all show warming trends, thus resulting in advancing trends during the warming stage (around spring) and delaying trends during the cooling stage (around autumn) in the timings of the climatic Solar Terms in the seasonal cycle. Most of these trends are statistically significant. The occurrence of extreme cold days shows a significant decreasing trend at both stations of Beijing and Shanghai, whereas the occurrence of extreme hot days at Shanghai station shows a significant increasing trend. In addition to the long-term trend, there exists apparent multi-decadal variability with a period of 60-80 years in both the occurrence of extreme hot days and summer temperature at Shanghai station, which is correlated with the Atlantic Multi-decadal Oscillation. These results can provide an important scientific base for climate change adaptation and benefit the understanding of modern climatic warming in China from a perspective of fine evolution of the seasonal cycle.
  • loading
  • [1]
    An S I, Choi J. 2009. Seasonal locking of the ENSO asymmetry and its influence on the seasonal cycle of the tropical eastern Pacific sea surface temperature[J]. Atmospheric Research, 94:3-9, doi:10.1016/j.atmosres. 2008.09.029.
    [2]
    Cao L J, Zhao P, Yan Z W, et al. 2013. Instrumental temperature series in eastern and central China back to the nineteenth century[J]. J. Geophys. Res., 118:8197-8207, doi: 10.1002/jgrd.50615.
    [3]
    Cao L J, Zhu Y N, Tang G L, et al. 2016. Climatic warming in China according to a homogenized data set from 2419 stations[J]. International Journal of Climatology, 36:4384-4392, doi: 10.1002/joc.4639.
    [4]
    Cao L J, Yan Z W, Zhao P, et al. 2017. Climatic warming in China during 1901-2015 based on an extended dataset of instrumental temperature records[J]. Environmental Research Letters, 12:064005, doi: 10.1088/1748-9326/aa68e8.
    [5]
    陈红梅, 张耀存, 何凤翩. 2005.上海气温与太平洋海温的相关关系及年代际差异[J].南京气象学院学报, 28:778-786. doi: 10.3969/j.issn.1674-7097.2005.06.008

    Chen Hongmei, Zhang Yaocun, He Fengpian. 2005. Correlations between temperature in Shanghai and Pacific SST and their interdecadal variations[J]. Journal of Nanjing Institute of Meteorology (in Chinese), 28:778-786, doi: 10.3969/j.issn.1674-7097.2005.06.008.
    [6]
    Hartmann D L, Klein Tank A M G, Rusticucci M, et al. 2013. Observations: Atmosphere and Surface Supplementary Material. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535pp.
    [7]
    Huang B Y, Thorne P W, Banzon V F, et al. 2017. Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5), Upgrades, validations, and intercomparisons[J]. Journal of Climate, 30:8179-8205, doi: 10.1175/JCLI-D-16-0836.1.
    [8]
    Huang N E, Shen Z, Long S R, et al. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 454:903-995, doi: 10.1098/rspa.1998.0193.
    [9]
    Huang N E, Wu Z H. 2008. A review on Hilbert-Huang transform:Method and its applications to geophysical studies[J]. Rev. Geophys., 46:RG2006, doi: 10.1029/2007RG000228.
    [10]
    江志红, 丁裕国. 1999.近百年上海气候变暖过程的再认识——平均温度与最低、最高温度的对比[J].应用气象学报, 10:151-159. doi: 10.3969/j.issn.1001-7313.1999.02.003

    Jiang Zhihong, Ding Yuguo. 1999. Renewed study on the warming process of Shanghai during the past 100 years[J]. Quarterly Journal of Applied Meteorology (in Chinese), 10:151-159, doi:10.3969/j.issn.1001-7313. 1999.02.003.
    [11]
    雷秋良, 徐建文, 姜帅, 等. 2014.气候变化对中国主要作物生育期的影响研究进展[J].中国农学通报, 30:205-209. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201411038

    Lei Qiuliang, Xu Jianwen, Jiang Shuai, et al. 2014. The knowledge of climate change impacts on growth durations of major crops in China[J]. Chinese Agricultural Science Bulletin (in Chinese), 30:205-209. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201411038
    [12]
    Li Z, Cao L J, Zhu Y N, et al. 2016. Comparison of two homogenized datasets of daily maximum/mean/minimum temperature in China during 1960-2013[J]. J. Meteor. Res., 30:53-66, doi: 10.1007/s13351-016-5054-x.
    [13]
    梁萍, 陈葆德. 2015.近139年中国东南部站点气温变化的多尺度特征[J].高原气象, 34:1323-1329. doi: 10.7522/j.issn.1000-0534.2014.00058

    Liang Ping, Chen Baode. 2015. Multiscale features of climate change for temperature of centurial weather stations over southeast China during latest 139 years[J]. Plateau Meteorology (in Chinese), 34:1323-1329, doi: 10.7522/j.issn.1000-0534.2014.00058.
    [14]
    刘娟, 杨沈斌, 王主玉, 等. 2010.长江中下游水稻生长季极端高温和低温事件的演变趋势[J].安徽农业科学, 38:13881-13884, 13901. doi: 10.3969/j.issn.0517-6611.2010.25.128

    Liu Juan, Yang Shenbin, Wang Zhuyu, et al. 2010. Evolution trend of extreme high and low temperature events during rice growing period in the middle and lower reaches of the Yangtze River[J]. Journal of Anhui Agricultural Sciences (in Chinese), 38:13881-13884, 13901, doi: 10.3969/j.issn.0517-6611.2010.25.128.
    [15]
    Lu R Y, Dong B W, Ding H. 2006. Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon[J]. Geophys. Res. Lett., 33:L24701, doi: 10.1029/2006GL027655.
    [16]
    穆海振, 孔春燕, 汤绪, 等. 2008.上海气温变化及城市化影响初步分析[J].热带气象学报, 24:672-678. doi: 10.3969/j.issn.1004-4965.2008.06.012

    Mu Haizhen, Kong Chunyan, Tang Xu, et al. 2008. Preliminary analysis of temperature change in Shanghai and urbanization impacts[J]. Journal of Tropical Meteorology (in Chinese), 24:672-678, doi: 10.3969/j.issn.1004-4965.2008.06.012.
    [17]
    Qian C. 2016a. Disentangling the urbanization effect, multi-decadal variability, and secular trend in temperature in eastern China during 1909-2010[J]. Atmospheric Science Letters, 17:177-182, doi: 10.1002/asl.640.
    [18]
    Qian C. 2016b. On trend estimation and significance testing for non-Gaussian and serially dependent data:Quantifying the urbanization effect on trends in hot extremes in the megacity of Shanghai[J]. Climate Dyn., 47:329-344, doi: 10.1007/s00382-015-2838-0.
    [19]
    Qian C, Fu C B, Wu Z H, et al. 2009. On the secular change of spring onset at Stockholm[J]. Geophys. Res. Lett., 36:L12706, doi: 10.1029/2009GL038617.
    [20]
    Qian C, Fu C B, Wu Z H, et al. 2011a. The role of changes in the annual cycle in earlier onset of climatic spring in northern China[J]. Advances in Atmospheric Sciences, 28:284-296, doi: 10.1007/s00376-010-9221-1.
    [21]
    Qian C, Ren G Y, Zhou Y Q. 2016. Urbanization effects on climatic changes in 24 particular timings of the seasonal cycle in the middle and lower reaches of the Yellow River[J]. Theor. Appl. Climatol., 124:781-791, doi: 10.1007/s00704-015-1446-6.
    [22]
    Qian C, Wu Z H, Fu C B, et al. 2010. On multi-timescale variability of temperature in China in modulated annual cycle reference frame[J]. Advances in Atmospheric Sciences, 27:1169-1182, doi: 10.1007/s00376-009-9121-4.
    [23]
    钱诚, 严中伟, 符淙斌. 2011. 1960~2008年中国二十四节气气候变化[J].科学通报, 56:3011-3020. http://www.cqvip.com/qk/94252X/201135/40268974.html
    [24]
    Qian Cheng, Yan Zhongwei, Fu Congbin. 2012. Climatic changes in the Twenty-four Solar Terms during 1960-2008[J]. Chinese Science Bulletin, 57:276-286. doi: 10.1007/s11434-011-4724-4
    [25]
    Qian C, Yan Z W, Wu Z H, et al. 2011b. Trends in temperature extremes in association with weather-intraseasonal fluctuations in eastern China[J]. Advances in Atmospheric Sciences, 28:297-309, doi: 10.1007/s00376-010-9242-9.
    [26]
    史军, 崔林丽, 田展, 等. 2011.上海百余年来气温日间波动特征及城市化影响[J].资源科学, 33:989-994. http://d.old.wanfangdata.com.cn/Periodical/zykx201105026

    Shi Jun, Cui Linli, Tian Zhan, et al. 2011. Two-day fluctuations of temperature and the impacts of urbanization in Shanghai during the period 1873-2009[J]. Resources Science (in Chinese), 33:989-994. http://d.old.wanfangdata.com.cn/Periodical/zykx201105026
    [27]
    Szentimrey T. 1999. Multiple analysis of series for homogenization (MASH)[C]//Proceeding of the 2nd Seminar for Homogenization of Surface Climatological Data. Geneva: WMO, 27-46.
    [28]
    Tao F L, Zhang S, Zhang Z. 2012. Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics[J]. European Journal of Agronomy, 43:201-212, doi: 10.1016/j.eja.2012.07.005.
    [29]
    王焕炯, 戴君虎, 葛全胜. 2012. 1952~2007年中国白蜡树春季物候时空变化分析[J].中国科学:地球科学, 42:701-710. doi: 10.1007/s11430-011-4349-0

    Wang Huanjiong, Dai Junhu, Ge Quansheng. 2012. The spatiotemporal characteristics of spring phenophase changes of Fraxinus chinensis in China from 1952 to 2007[J]. Science China Earth Sciences, 55:991-1000, doi: 10.1007/s11430-011-4349-0.
    [30]
    Wang X L, Feng Y. 2010. RHtestsV3 User Manual[R]. Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada, Toronto, Ontario, Canada, 27pp.
    [31]
    Wang Y M, Li S L, Luo D H. 2009. Seasonal response of Asian monsoonal climate to the Atlantic multidecadal oscillation[J]. J. Geophys. Res., 114:D02112, doi: 10.1029/2008JD010929.
    [32]
    Wu Z H, Huang N E. 2009. Ensemble empirical mode decomposition:A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 1:1-41, doi: 10.1142/S1793536909000047.
    [33]
    Xia J J, Tu K, Yan Z W, et al. 2016. The super-heat wave in eastern China during July-August 2013:A perspective of climate change[J]. International Journal of Climatology, 36:1291-1298, doi: 10.1002/joc.4424.
    [34]
    Xiao D P, Tao F L, Liu Y J, et al. 2013. Observed changes in winter wheat phenology in the North China Plain for 1981-2009[J]. International Journal of Biometeorology, 57:275-285, doi: 10.1007/s00484-012-0552-8.
    [35]
    徐家良. 1993.近百余年上海气温变化的若干特征[J].地理学报, 48:26-32. doi: 10.11821/xb199301004

    Xu Jialiang. 1993. Some features of temperature variations in Shanghai for the 118 year period[J]. Acta Geographica Sinica (in Chinese), 48:26-32, doi: 10.11821/xb199301004.
    [36]
    Yan Z W, Yang C, Jones P. 2001. Influence of inhomogeneity on the estimation of mean and extreme temperature trends in Beijing and Shanghai[J]. Advances in Atmospheric Sciences, 18:309-322, doi: 10.1007/BF02919312.
    [37]
    严中伟, 李珍, 夏江江. 2014.气候序列的均一化——定量评估气候变化的基础[J].中国科学:地球科学, 44:2101-2111. doi: 10.1007/s11430-014-4945-x

    Yan Zhongwei, Li Zhen, Xia Jiangjiang. 2014. Homogenization of climate series:The basis for assessing climate changes[J]. Science China Earth Sciences, 57:2891-2900, doi: 10.1007/s11430-014-4945-x.
    [38]
    周伟东, 朱洁华, 梁萍. 2010.近134年上海冬季气温变化特征及其可能成因[J].热带气象学报, 26:211-217. doi: 10.3969/j.issn.1004-4965.2010.02.011

    Zhou Weidong, Zhu Jiehua, Liang Ping. 2010. Characteristics of winter temperature variation in Shanghai during 1873-2006 and their probable causes[J]. Journal of Tropical Meteorology (in Chinese), 26:211-217, doi:10.3969/j.issn. 1004-4965.2010.02.011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (1406) PDF downloads(1334) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return