Advanced Search
Xiaolei MEN, Ruili JIAO, Ding WANG, Chenguang ZHAO, Yakun LIU, Jiangjiang XIA, Haochen LI, Zhongwei YAN, Jianhua SUN, Lizhi WANG. A Temperature Correction Method for Multi-model Ensemble Forecast in North China Based on Machine Learning[J]. Climatic and Environmental Research, 2019, 24(1): 116-124. doi: 10.3878/j.issn.1006-9585.2018.18049
Citation: Xiaolei MEN, Ruili JIAO, Ding WANG, Chenguang ZHAO, Yakun LIU, Jiangjiang XIA, Haochen LI, Zhongwei YAN, Jianhua SUN, Lizhi WANG. A Temperature Correction Method for Multi-model Ensemble Forecast in North China Based on Machine Learning[J]. Climatic and Environmental Research, 2019, 24(1): 116-124. doi: 10.3878/j.issn.1006-9585.2018.18049

A Temperature Correction Method for Multi-model Ensemble Forecast in North China Based on Machine Learning

doi: 10.3878/j.issn.1006-9585.2018.18049

Strategic Priority Research Program of Chinese Academy of Sciences A-XDA19030403

Strategic Priority Research Program of Chinese Academy of Sciences XDA19040202

  • Received Date: 2018-04-02
    Available Online: 2018-07-04
  • Publish Date: 2019-01-20
  • Post-forecast data processing is critical for obtaining reliable local weather forecast. In this study, the authors developed three post-processing models based on ridge regression (Ridge), random forest (RF), and deep learning (DL) methods. The post-processing models were trained by observational and forecast data of daily 2-m above surface air temperature in North China (38°N-43°N, 113°E-119°E) from four numerical weather forecast (NWF) models (BABJ model from China Meteorological Administration, ECMF model from ECMWF, RJTD model from Japan Meteorological Agency, and KWBC model from NCEP, respectively), for the training period from February 2014 to September 2016, and then applied to the forecast period from October 2016 to September 2017. The forecast results of the post-processing models together with those of commonly-used multi-model ensemble mean (EMN) and individual NWF models were evaluated according to the root-mean-square error (RMSE). The main results are as follows:1) For the region as a whole, with the increase in the forecast lead time, all the NWF models, EMN and the post-processing models exhibit increasing RMSEs, but the RMSEs of the three post-processing models are all significantly smaller than those of EMN and individual NWF models; especially, DL is slightly better for the short-term (the first few days) forecast and RF is slightly better for the longer-term prediction. 2) The RMSEs are relatively smaller in the southeastern part of North China, approximately in the range of (38°N-41°N, 115.5°E-119°E) than else where; on average, DL is slightly better, and the RMSEs of the three machine learning models are between 1.24℃ and 1.26℃, while the EMN error is 1.69℃. 3) There are seasonal differences:The results of all the models are relatively good for the summer, but poor in general for the winter. All the three post-processing models perform better than EMN and individual NWF models, with a smallest average RMSE of 2.15℃ for Ridge compared with 2.45℃ for EMN.
  • loading
  • [1]
    陈博宇, 代刊, 郭云谦. 2015. 2013年汛期ECMWF集合统计量产品的降水预报检验与分析[J].暴雨灾害, 34 (1):64-73. doi: 10.3969/j.issn.1004-9045.2015.01.009

    Chen Boyu, Dai Kan, Guo Yunqian. 2015. Precipitation verification and analysis of ECMWF ensemble statistic products in 2013 flooding season[J]. Torrential Rain and Disasters (in Chinese), 34 (1):64-73, doi:10.3969/j.issn.1004-9045. 2015.01.009.
    范苏丹, 盛春岩, 肖明静, 等. 2015.多模式集合对山东省气象要素预报效果检验[J].气象与环境学报, 31 (6):68-77. doi: 10.3969/j.issn.1673-503X.2015.06.009

    Fan Sudan, Sheng Chunyan, Xiao Mingjing, et al. 2015. Forecast effect verification of multi-model ensemble for meteorological elements in Shandong Province[J]. Journal of Meteorology and Environment (in Chinese), 31 (6):68-77, doi: 10.3969/j.issn.1673-503X.2015.06.009.
    冯慧敏, 智协飞, 崔慧慧, 等. 2016.基于多模式集成技术的地面气温精细化预报[J].气象与环境科学, 39 (4):73-79. doi: 10.16765/j.cnki.1673-7148.2016.04.012

    Feng Huimin, Zhi Xiefei, Cui Huihui, et al. 2016. Refined forecasting of surface temperature based on multi-model ensemble technology[J]. Meteorological and Environmental Sciences (in Chinese), 39 (4):73-79, doi: 10.16765/j.cnki.1673-7148.2016.04.012.
    Hernández E, Sanchez-Anguix V, Julian V, et al. 2016. Rainfall prediction: A deep learning approach[C]//Proceedings of the 11th International Conference on Hybrid Artificial Intelligence Systems. Seville: Springer, 151-162, doi: 10.1007/978-3-319-32034-2_13.
    Hinton G E, Osindero S, Teh Y W. 2006. A fast learning algorithm for deep belief nets[J]. Neural Computation, 18 (7):1527-1554, doi: 10.1162/neco.2006.18.7.1527.
    黄威, 牛若芸. 2017.基于集合预报和支持向量机的中期强降雨集成预报试验[J].气象, 43 (9):1110-1116. doi: 10.7519/j.issn.1000-0526.2017.09.008

    Huang Wei, Niu Ruoyun. 2017. The medium-term multi-model integration forecast experimentation for heavy rain based on support vector machine[J]. Meteorological Monthly (in Chinese), 43 (9):1110-1116, doi:10.7519/j.issn.1000-0526.2017. 09.008.
    焦李成, 杨淑媛, 刘芳, 等. 2016.神经网络七十年:回顾与展望[J].计算机学报, 39 (8):1697-1716.

    Jiao Licheng, Yang Shuyuan, Liu Fang, et al. 2016. Seventy years beyond neural networks:Retrospect and prospect[J]. Chinese Journal of Computers (in Chinese), 39 (8):1697-1716.
    Krishnamurti T N, Kishtawal C M, LaRow T E, et al. 1999. Improved weather and seasonal climate forecasts from multimodel super ensemble[J]. Science, 285 (5433):1548-1550, doi: 10.1126/science.285.5433.1548.
    李刚, 谢清霞, 魏涛. 2016.集合预报在贵州最低气温中的应用[J].安徽农业科学, 44 (14):229-231. doi: 10.3969/j.issn.0517-6611.2016.14.078

    Li Gang, Xie Qingxia, Wei Tao. 2016. Application of multi-model ensemble method for minimum temperature in Guizhou Province[J]. Journal of Anhui Agricultural Sciences (in Chinese), 44 (14):229-231, doi: 10.3969/j.issn.0517-6611.2016.14.078.
    李丽辉, 朱建生, 强丽霞, 等. 2017.基于随机森林回归算法的高速铁路短期客流预测研究[J].铁道运输与经济, 39(9):12-16. doi: 10.16668/j.cnki.issn.1003-1421.2017.09.03

    Li Lihui, Zhu Jiansheng, Qiang Lixia, et al. 2017. Study on forecast of high-speed railway short-term passenger flow based on random forest regression[J]. Railway Transport and Economy (in Chinese), 39 (9):12-16, doi:10. 16668/j.cnki.issn.1003-1421.2017.09.03.
    马清. 2008.中尺度集合预报的偏差订正与多模式集成研究[D].南京信息工程大学硕士学位论文, 78pp.

    Ma Qing. 2008. Study of the bias-correction and multi-model combine of mesoscale ensemble forecast[D]. M. S. thesis (in Chinese), Nanjing University of Information Science and Technology, 78pp.
    牛金龙, 张东方, 姚鹏, 等. 2016.多模式资料在成都地区的温度预报研究应用[J].高原山地气象研究, 36 (3):66-70, 75.

    Niu Jinlong, Zhang Dongfang, Yao Peng, et al. 2016. Application study of multi-mode data in the forecast of temperaturein Chengdu[J]. Plateau and Mountain Meteorology Research (in Chinese), 36 (3):66-70, 75.
    潘留杰, 张宏芳, 朱伟军, 等. 2013. ECMWF模式对东北半球气象要素场预报能力的检验[J].气候与环境研究, 18 (1):111-123. doi: 10.3878/j.issn.1006-9585.2012.11097

    Pan Liujie, Zhang Hongfang, Zhu Weijun, et al. 2013. Forecast performance verification of the ECMWF model over the Northeast Hemisphere[J]. Climatic andEnvironmental Research (in Chinese), 18 (1):111-123, doi: 10.3878/j.issn.1006-9585.2012.11097.
    Wang H Z, Li G Q, Wang G B, et al. 2017. Deep learning based ensemble approach for probabilistic wind power forecasting[J]. Applied Energy, 188:56-70, doi: 10.1016/j.apenergy.2016.11.111.
    王奕森, 夏树涛. 2018.集成学习之随机森林算法综述[J].信息通信技术, 12 (1):49-55. doi: 10.3969/j.issn.1674-1285.2018.01.009

    Wang Yisen, Xia Shutao. 2018. A survey of random forests algorithms[J]. Information and Communications Technologies (in Chinese), 12 (1):49-55, doi: 10.3969/j.issn.1674-1285.2018.01.009.
    邢彩盈, 张京红, 黄海静. 2016.基于BP神经网络的海口住宅室内气温预测[J].贵州气象, 40 (5):38-42. doi: 10.3969/j.issn.1003-6598.2016.05.007

    Xing Caiying, Zhang Jinghong, Huang Haijing. 2016. Forecast of residential indoor temperature based on BP neural network in Haikou[J]. Journal of Guizhou Meteorology (in Chinese), 40 (5):38-42, doi: 10.3969/j.issn.1003-6598.2016.05.007.
    熊国经, 董玉竹, 宗瑾. 2017.基于岭回归法对"三废"排放影响因素的研究——以江西省为例[J].生态经济, 33 (2):103-107.

    Xiong Guojing, Dong Yuzhu, Zong Jin. 2017. Research on the discharge of "Three Wastes" factors based on ridge regression:Taking Jiangxi Province as an example[J]. Ecological Economy (in Chinese), 33 (2):103-107.
    叶笃正, 严中伟, 戴新刚, 等. 2006.未来的天气气候预测体系[J].气象, 32 (4):3-8. doi: 10.3969/j.issn.1000-0526.2006.04.001

    Ye Duzheng, Yan Zhongwei, Dai Xingang, et al. 2006. A discussion of future system of weather and climate prediction[J]. Meteorological Monthly (in Chinese), 32 (4):3-8, doi:10.3969/j.issn. 1000-0526.2006.04.001.
    张恒德, 张庭玉, 李涛, 等. 2018.基于BP神经网络的污染物浓度多模式集成预报[J].中国环境科学, 38 (4):1243-1256. doi: 10.19674/j.cnki.issn1000-6923.2018.0147

    Zhang Hengde, Zhang Tingyu, Li Tao, et al. 2018. Forecast of air quality pollutants' concentrations based on BP neural network multi-model ensemble method[J]. China Environmental Science (in Chinese), 38 (4):1243-1256, doi: 10.19674/j.cnki.issn1000-6923.2018.0147.
    张禄, 杨志军. 2016.基于神经网络和主分量的日极值气温预测方法[C]//第33届中国气象学会年会S20气象信息化——业务实践与技术应用.西安: 中国气象学会, 5pp.

    Zhang Lu, Yang Zhijun. 2016. BP neural network prediction model of the extreme temperature based on principal component analysis[C]//33rd Annual Meeting of China Meteorological Society. Xi'an: Chinese Meteorological Society, 5pp.
    张伟, 王自发, 安俊岭, 等. 2010.利用BP神经网络提高奥运会空气质量实时预报系统预报效果[J].气候与环境研究, 15 (5):595-601. doi: 10.3878/j.issn.1006-9585.2010.05.08

    Zhang Wei, Wang Zifa, An Junling, et al. 2010. Update the ensemble air quality modeling system with BP model during Beijing Olympics[J]. Climatic and Environmental Research (in Chinese), 15 (5):595-601, doi: 10.3878/j.issn.1006-9585.2010.05.08.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (1505) PDF downloads(1443) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint