Effect of Tibetan Plateau Orography Height Change on Stationary Disturbance Energy Conversion in East Asia
-
Graphical Abstract
-
Abstract
Using the National Center for Atmospheric Research Community Atmosphere Model version 3 (CAM3) outputs and European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-Interim) data, the role of the orography of the Tibetan and Iranian Plateaus in modulating the sources of stationary wave energy is investigated in this study. The sources of stationary wave energy in the troposphere during winter are located in two areas, i.e., East Asia north of the plateau and western Pacific downstream of the plateau. When orographic uplift occurs, the baroclinic development weakens over East Asia north of the plateau and enhances over western Pacific downstream of the plateau in the troposphere. The location of the barotropic development of stationary wave energy is similar to that of baroclinic development. Meanwhile, the intensity of the barotropic development of stationary wave energy is weaker than that of baroclinic development in the troposphere. When orographic height uplift occurs, the barotropic development of stationary wave energy first weakens and then enhances over East Asia north of the plateau, whereas it enhances over Western Pacific downstream of the plateau in the troposphere. In the troposphere during winter, the total stationary wave energy development is consistent with the baroclinic development of stationary wave energy, which indicates that the baroclinic development of stationary wave energy plays an important role in the development of stationary wave.
-
-