Advanced Search
Volume 27 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
LI Xianru, WEI Zhigang, LIU Yujia, et al. 2022. Spatial and Temporal Characteristics of Annual and Seasonal Rainstorms in South China during 1961–2018 [J]. Climatic and Environmental Research (in Chinese), 27 (1): 1−18 doi: 10.3878/j.issn.1006-9585.2021.21087
Citation: LI Xianru, WEI Zhigang, LIU Yujia, et al. 2022. Spatial and Temporal Characteristics of Annual and Seasonal Rainstorms in South China during 1961–2018 [J]. Climatic and Environmental Research (in Chinese), 27 (1): 1−18 doi: 10.3878/j.issn.1006-9585.2021.21087

Spatial and Temporal Characteristics of Annual and Seasonal Rainstorms in South China during 1961–2018

doi: 10.3878/j.issn.1006-9585.2021.21087
Funds:  National Key Research and Development Program of China (Grant 2017YFC1502301), the Major Projects for Talent Team Introduction of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), China (Grant GML2019ZD0601), National Natural Science Foundation of China (Grant 41875089)
  • Received Date: 2021-05-13
    Available Online: 2021-08-15
  • Publish Date: 2022-01-25
  • The daily grid precipitation data from 1961 to 2018 were obtained by interpolating data from more than 2400 national meteorological stations in China. Based on this data set, regression analysis, Morlet wavelet transform, and other methods are employed to analyze the spatial and temporal characteristics of the rainstorm and regional rainstorm in South China; moreover, the variation laws of heavy precipitation are revealed. Results show that from 1961 to 2018, the maximum number of annual rainstorm days and amount of rainstorm rainfall in South China are distributed in the coastal areas of Guangdong, Guangxi, and Fujian, as well as Hainan Province and the northern part of Guangxi. The number of rainstorm days and amount of rainfall are the largest in summer, followed by spring. From the northern part of Guangxi to the junction of Guangxi, Hunan, and Guangdong provinces, the southern part of Guangdong, Fujian, and Hainan provinces, the increasing trend of rainstorm days, rainfall, and intensity are the most significant. The regional mean increasing trend is the highest in summer, followed by autumn. Additionally, the number of regional rainstorm days and processes in South China presents the occurrence of a single peak distribution, which could occur throughout the year. Moreover, the maximum value appears in June. The annual average number of regional rainstorm days and processes are 28 d a−1 and 16.5 a−1, and the increasing rates are 0.15 d a−1 and 0.097 a−1. In four seasons, the increasing rate is the fastest during summer and the slowest in autumn. The average and maximum of a single course duration increase significantly at the rate of 0.015 d a−1 in winter but show a decreasing trend in spring. For the periodic change, the South China rainstorm and regional rainstorm show quasi-three-year, quasi-14-year, and quasi-18-year cycle changes to different degrees in annual and seasonal fluctuations. After 2000, the quasi-18-year long period and quasi-three-year short-period oscillations of annual rainstorms and regional rainstorms are extremely significant.
  • loading
  • [1]
    Alexander L V, Zhang X, Peterson T C, et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation [J]. J. Geophys. Res. :Atmos., 111(D5): D05109. doi: 10.1029/2005JD006290
    Asadieh B, Krakauer N Y. 2015. Global trends in extreme precipitation: Climate models versus observations [J]. Hydrol. Earth Syst. Sci., 19(2): 877−891. doi: 10.5194/hess-19-877-2015
    Bohlinger P, Sorteberg A, Liu C H, et al. 2019. Multiscale characteristics of an extreme precipitation event over Nepal [J]. Quart. J. Roy. Meteor. Soc., 145(718): 179−196. doi: 10.1002/qj.3418
    Bouwer L M. 2013. Projections of future extreme weather losses under changes in climate and exposure [J]. Risk Analysis, 33(5): 915−930. doi: 10.1111/j.1539-6924.2012.01880.x
    陈少勇, 张晓芬, 郭俊瑞, 等. 2015. 中国南方暴雨日数的气候变化特征 [J]. 气候变化研究快报, 4(4): 228−236. doi: 10.12677/ccrl.2015.44026

    Chen Shaoyong, Zhang Xiaofen, Guo Junrui, et al. 2015. Climate change characteristics of rainstorm days in South China [J]. Climate Change Research Letters (in Chinese), 4(4): 228−236. doi: 10.12677/ccrl.2015.44026
    Chen Y L, Li J. 1995. Large-scale conditions favorable for the development of heavy rainfall during TAMEX IOP 3 [J]. Mon. Wea. Rev., 123(10): 2978−3002. doi:10.1175/1520-0493(1995)123<2978:LSCFFT>2.0.CO;2
    Chen Y, Zhai P M. 2013. Persistent extreme precipitation events in China during 1951–2010 [J]. Climate Research, 57(2): 143−155. doi: 10.3354/cr01171
    Chu Q C, Wang Q G, Qiao S B, et al. 2017. Spatial–temporal characteristics of the “cumulative effect” of torrential rain over South China [J]. Theor. Appl. Climatol., 127(3): 911−921. doi: 10.1007/s00704-015-1669-6
    Chu Q C, Wang Q G, Qiao S B, et al. 2018. Feature analysis and primary causes of pre-flood season “cumulative effect” of torrential rain over South China [J]. Theor. Appl. Climatol., 131(1-2): 91−100. doi: 10.1007/s00704-016-1947-y
    丁一汇, 张建云. 2009. 暴雨洪涝 [M]. 北京: 气象出版社. Ding Yihui, Zhang Jianyun. 2009. Torrential Rain and Flood (in Chinese) [M]. Beijing: China Meteorological Press.
    Dougherty E, Rasmussen K L. 2019. Climatology of flood-producing storms and their associated rainfall characteristics in the United States [J]. Mon. Wea. Rev., 147(11): 3861−3877. doi: 10.1175/MWR-D-19-0020.1
    Eden J M, Kew S F, Bellprat O, et al. 2018. Extreme precipitation in the Netherlands: An event attribution case study [J]. Weather and Climate Extremes, 21: 90−101. doi: 10.1016/j.wace.2018.07.003
    Frich P, Alexander L V, Della-Marta P, et al. 2002. Observed coherent changes in climatic extremes during the second half of the twentieth century [J]. Climate Research, 19(3): 193−212. doi: 10.3354/cr019193
    He L Q, Hao X, Li H, et al. 2021. How do extreme summer precipitation events over eastern China subregions change? [J]. Geophys. Res. Lett., 48(5): e2020GL091849. doi: 10.1029/2020GL091849
    Hettiarachchi S, Wasko C, Sharma A. 2018. Increase in flood risk resulting from climate change in a developed urban watershed-the role of storm temporal patterns [J]. Hydrology and Earth System Sciences, 22(3): 2041−2056. doi: 10.5194/hess-22-2041-2018
    Houze R A Jr. 2004. Mesoscale convective systems [J]. Rev. Geophys., 42(4): RG4003. doi: 10.1029/2004RG000150
    Huang L, Luo Y L, Zhang D L. 2018. The relationship between anomalous presummer extreme rainfall over South China and synoptic disturbances [J]. J. Geophys. Res. :Atmos., 123(7): 3395−3413. doi: 10.1002/2017JD028106
    Iwasaki H. 2015. Increasing trends in heavy rain during the warm season in eastern Japan and its relation to moisture variation and topographic convergence [J]. International Journal of Climatology, 35(8): 2154−2163. doi: 10.1002/joc.4115
    蒋鹏, 王大刚, 陈晓宏. 2015. 广东省近50年极端降水事件的时空特征及成因分析 [J]. 水文, 35(2): 77−84. doi: 10.3969/j.issn.1000-0852.2015.02.017

    Jiang Peng, Wang Dagang, Chen Xiaohong. 2015. Spatial–temporal characteristics of extreme precipitation and its causes in Guangdong province in recent 50 years [J]. Journal of China Hydrology (in Chinese), 35(2): 77−84. doi: 10.3969/j.issn.1000-0852.2015.02.017
    Li J, Yu R C, Zhou T J. 2008. Seasonal variation of the diurnal cycle of rainfall in southern contiguous China [J]. J. Climate, 21(22): 6036−6043. doi: 10.1175/2008JCLI2188.1
    李艳兰, 黄卓, 何洁琳, 等. 2020. 1961~2017年广西区域性暴雨过程变化特征 [J]. 气象与环境学报, 36(1): 51−57. doi: 10.3969/j.issn.1673503X.2020.01.007

    Li Yanlan, Huang Zhuo, He Jielin, et al. 2020. Characteristics of the regional rainstorm processes in Guangxi during 1961−2017 [J]. Journal of Meteorology and Environment (in Chinese), 36(1): 51−57. doi: 10.3969/j.issn.1673503X.2020.01.007
    刘雨佳, 张强, 余予. 2017. 华南地区1961~2014年暴雨及典型暴雨事件统计分析 [J]. 暴雨灾害, 36(1): 26−32. doi: 10.3969/j.issn.1004-9045.2017.01.004

    Liu Yujia, Zhang Qiang, Yu Yu. 2017. Analysis of heavy rain and typical torrential rain event in southern China during 1961–2014 [J]. Torrential Rain and Disasters (in Chinese), 36(1): 26−32. doi: 10.3969/j.issn.1004-9045.2017.01.004
    罗艳艳, 何金海, 邹燕, 等. 2015. 华南前汛期雨涝强、弱年的确定及其环流特征对比 [J]. 气象科学, 35(2): 160−166. doi: 10.3969/2014jms.0080

    Luo Yanyan, He Jinhai, Zou Yan, et al. 2015. Determination of strong and weak rain-waterlogging years in pre-rainy season over South China and their circulation features comparison [J]. Journal of the Meteorological Sciences (in Chinese), 35(2): 160−166. doi: 10.3969/2014jms.0080
    Luo Y L, Sun J S, Li Y, et al. 2020a. Science and prediction of heavy rainfall over China: Research progress since the reform and opening-up of new China [J]. J. Meteor. Res., 34(3): 427−459. doi: 10.1007/s13351-020-0006-x
    Luo Y L, Xia R D, Chan J C L. 2020b. Characteristics, physical mechanisms, and prediction of pre-summer rainfall over South China: Research progress during 2008-2019 [J]. J. Meteor. Soc. Japan Ser. II, 98(1): 19−42. doi: 10.2151/jmsj.2020-002
    Mahapatra B, Walia M, Saggurti N. 2018. Extreme weather events induced deaths in India 2001−2014: Trends and differentials by region, sex and age group [J]. Weather and Climate Extremes, 21: 110−116. doi: 10.1016/j.wace.2018.08.001
    Nayak M A. 2016. Heavy rainfall and flooding associated with atmospheric rivers over the central United States [D]. Ph. D. dissertation, University of Iowa. doi: 10.17077/etd.31vtkgg7
    牛若芸, 刘凑华, 刘为一, 等. 2018. 1981~2015年中国95°E以东区域性暴雨过程时、空分布特征 [J]. 气象学报, 76(2): 182−195. doi: 10.11676/qxxb2017.092

    Niu Ruoyun, Liu Couhua, Liu Weiyi, et al. 2018. Characteristics of temporal and spatial distribution of regional rainstorm processes to the east of 95°E in China during 1981–2015 [J]. Acta Meteorologica Sinica (in Chinese), 76(2): 182−195. doi: 10.11676/qxxb2017.092
    钱维宏. 2011. 气候变化与中国极端气候事件图集[M]. 北京: 气象出版社, 146–156.

    Qian Weihong. 2011. Atlas of Climate Change and China Extreme Climate Events (in Chinese) [M]. Beijing: China Meteorological Press, 146–156.
    任国玉, 封国林, 严中伟. 2010. 中国极端气候变化观测研究回顾与展望 [J]. 气候与环境研究, 15(4): 337−353. doi: 10.3878/j.issn.1006-9585.2010.04.01

    Ren Guoyu, Feng Guolin, Yan Zhongwei. 2010. Progresses in observation studies of climate extremes and changes in mainland China [J]. Climatic and Environmental Research (in Chinese), 15(4): 337−353. doi: 10.3878/j.issn.1006-9585.2010.04.01
    Ren F M, Cui D L, Gong Z Q, et al. 2012. An objective identification technique for regional extreme events [J]. J. Climate, 25(20): 7015−7027. doi: 10.1175/JCLI-D-11-00489.1
    Siswanto, Van Der Schrier G, Jan Van oldenborgh G, et al. 2017. A very unusual precipitation event associated with the 2015 floods in Jakarta: An analysis of the meteorological factors [J]. Weather and Climate Extremes, 16: 23−28. doi: 10.1016/j.wace.2017.03.003
    Song X M, Zou X J, Zhang C H, et al. 2019. Multiscale spatio–temporal changes of precipitation extremes in Beijing–Tianjin–Hebei region, China during 1958–2017 [J]. Atmosphere, 10(8): 462. doi: 10.3390/atmos10080462
    陶诗言. 1980. 中国之暴雨[M]. 北京: 科学出版社, 3–5

    Tao Shiyan. 1980. Heavy Rain in China (in Chinese) [M]. Beijing: Science Press, 3–5.
    陶诗言. 2001. 1998年夏季中国暴雨的形成机理与预报研究 [M]. 北京: 气象出版社. Tao Shiyan. 2001. Study on the Formation Mechanism and Forecast of Heavy Rain in China in Summer of 1998 (in Chinese) [M]. Beijing: China Meteorological Press.
    Tao Y Y, Wang W, Song S, et al. 2018. Spatial and temporal variations of precipitation extremes and seasonality over China from 1961–2013 [J]. Water, 10(6): 719. doi: 10.3390/w10060719
    Tong S Q, Li X Q, Zhang J Q, et al. 2019. Spatial and temporal variability in extreme temperature and precipitation events in Inner Mongolia (China) during 1960-2017 [J]. Sci. Total Environ., 649: 75−89. doi: 10.1016/j.scitotenv.2018.08.262
    Touré Halimatou A, Kalifa T, Kyei-Baffour N. 2017. Assessment of changing trends of daily precipitation and temperature extremes in Bamako and Ségou in Mali from 1961–2014 [J]. Weather and Climate Extremes, 18: 8−16. doi: 10.1016/j.wace.2017.09.002
    Tu K, Yan Z W, Wang Y. 2011. A spatial cluster analysis of heavy rains in China [J]. Atmospheric and Oceanic Science Letters, 4(1): 36−40. doi: 10.1080/16742834.2011.11446897
    Wang F, Yang S, Higgins W, et al. 2014. Long-term changes in total and extreme precipitation over China and the United States and their links to oceanic–atmospheric features [J]. Int. J. Climatol., 34(2): 286−302. doi: 10.1002/joc.3685
    韦志刚, 李娴茹, 刘雨佳, 等. 2021. 1961~2018年华南年和各季极端降水变化特征的比较分析 [J/OL]. 高原气象. Wei Zhigang, Li Xianru, Liu Yujia, et al. 2021. Comparative analysis of the characteristics of annual and seasonal extreme precipitation in South China during 1961–2018 [J/OL]. Plateau Meteorology (in Chinese).
    吴佳, 高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比 [J]. 地球物理学报, 56(4): 1102−1111. doi: 10.6038/cjg30130406

    Wu Jia, Gao Xuejie. 2013. A gridded daily observation dataset over China region and comparison with the other datasets [J]. Chinese J. Geophys. (in Chinese), 56(4): 1102−1111. doi: 10.6038/cjg30130406
    伍红雨, 邹燕, 刘尉. 2019. 广东区域性暴雨过程的定量化评估及气候特征 [J]. 应用气象学报, 30(2): 233−244. doi: 10.11898/1001-7313.20190210

    Wu Hongyu, Zou Yan, Liu Wei. 2019. Quantitative assessment of regional heavy rainfall process in Guangdong and its climatological characteristics [J]. Journal of Applied Meteorological Science (in Chinese), 30(2): 233−244. doi: 10.11898/1001-7313.20190210
    Wu J, Gao X J, Giorgi F, et al. 2017. Changes of effective temperature and cold/hot days in late decades over China based on a high resolution gridded observation dataset [J]. International Journal of Climatology, 37: 788−800. doi: 10.1002/joc.5038
    Wu M W, Luo Y L, Chen F, et al. 2019. Observed link of extreme hourly precipitation changes to urbanization over coastal South China [J]. J. Appl. Meteor. Climatol., 58(8): 1799−1819. doi: 10.1175/JAMC-D-18-0284.1
    Xie Z Q, Du Y, Zeng Y, et al. 2018. Classification of yearly extreme precipitation events and associated flood risk in the Yangtze–Huaihe River valley [J]. Science China Earth Sciences, 61(9): 1341−1356. doi: 10.1007/s11430-017-9212-8
    熊敏诠. 2017. 近60年中国日降水量分区及气候特征 [J]. 大气科学, 41(5): 933−948. doi: 10.3878/j.issn.1006-9895.1703.16169

    Xiong Minquan. 2017. Climate regionalization and characteristics of daily precipitation in China in recent 60 years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(5): 933−948. doi: 10.3878/j.issn.1006-9895.1703.16169
    Xu W X, Zipser E J, Liu C T. 2009. Rainfall characteristics and convective properties of Meiyu precipitation systems over South China, Taiwan, and the South China Sea. Part I: TRMM observations [J]. Mon. Wea. Rev., 137(12): 4261−4275. doi: 10.1175/2009MWR2982.1
    杨荆安, 闵爱荣, 廖移山. 2012. 2011年4~10月我国主要暴雨天气过程简述 [J]. 暴雨灾害, 31(1): 87−95. doi: 10.3969/j.issn.1004-9045.2012.01.014

    Yang Jin’an, Min Airong, Liao Yishan. 2012. Important heavy rain processes in China from April to October in 2011 [J]. Torrential Rain and Disasters (in Chinese), 31(1): 87−95. doi: 10.3969/j.issn.1004-9045.2012.01.014
    叶殿秀, 王遵娅, 高荣, 等. 2019. 1961~2016年我国区域性暴雨过程的客观识别及其气候特征 [J]. 气候变化研究进展, 15(6): 575−583. doi: 10.12006/j.issn.1673-1719.2018.172

    Ye Dianxiu, Wang Zunya, Gao Rong, et al. 2019. Objective identification and climatic characters of the regional rainstorm event in China from 1961 to 2016 [J]. Climate Change Research (in Chinese), 15(6): 575−583. doi: 10.12006/j.issn.1673-1719.2018.172
    Yin J F, Zhang D L, Luo Y L, et al. 2020. On the extreme rainfall event of 7 May 2017 over the coastal city of Guangzhou. Part I: Impacts of urbanization and orography [J]. Mon. Wea. Rev., 148(3): 955−979. doi: 10.1175/MWR-D-19-0212.1
    Yuan Z, Yang Z Y, Yan D H, et al. 2017. Historical changes and future projection of extreme precipitation in China [J]. Theor. Appl. Climatol., 127(1): 393−407. doi: 10.1007/s00704-015-1643-3
    Zeder J, Fischer E M. 2020. Observed extreme precipitation trends and scaling in central Europe [J]. Weather and Climate Extremes, 29: 100266. doi: 10.1016/j.wace.2020.100266
    张世轩, 封国林, 赵俊虎. 2013. 长江中下游地区暴雨“积成效应” [J]. 物理学报, 62(6): 069201. doi: 10.7498/aps.62.069201

    Zhang Shixuan, Feng Guolin, Zhao Junhu. 2013. “Cumulative Effect” of torrential rain in the middle and lower reaches of the Yangtze River [J]. Acta Phys. Sin. (in Chinese), 62(6): 069201. doi: 10.7498/aps.62.069201
    Zhang D L, Lin Y H, Zhao P, et al. 2013. The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons [J]. Geophys. Res. Lett., 40(7): 1426−1431. doi: 10.1002/grl.50304
    Zhao Y, Xu X D, Zhao T L, et al. 2016. Extreme precipitation events in East China and associated moisture transport pathways [J]. Sci. China Earth Sci., 59(9): 1854−1872. doi: 10.1007/s11430-016-5315-7
    Zheng Y G, Xue M, Li B, et al. 2016. Spatial characteristics of extreme rainfall over China with hourly through 24-hour accumulation periods based on national-level hourly rain gauge data [J]. Adv. Atmos. Sci., 33(11): 1218−1232. doi: 10.1007/s00376-016-6128-5
    Zhou X Y, Lei W J. 2018. Complex patterns of precipitation and extreme events during 1951−2011 in Sichuan basin, southwestern China [J]. Journal of Mountain Science, 15(2): 340−356. doi: 10.1007/s11629-016-4186-x
    邹燕, 叶殿秀, 林毅, 等. 2014. 福建区域性暴雨过程综合强度定量化评估方法 [J]. 应用气象学报, 25(3): 360−364. doi: 10.3969/j.issn.1001-7313.2014.03.014

    Zou Yan, Ye Dianxiu, Lin Yi, et al. 2014. A quantitative method for assessment of regional heavy rainfall intensity [J]. Journal of Applied Meteorological Science (in Chinese), 25(3): 360−364. doi: 10.3969/j.issn.1001-7313.2014.03.014
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (354) PDF downloads(71) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint