Advanced Search
Volume 27 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
WU Ji, CHEN Weidong, ZI Yucheng, et al. 2022. Verification and Analysis of the Impact of Cold Wave Weather Process on the Numerical Prediction Skills of Wind/Photovoltaic Power Resource Elements [J]. Climatic and Environmental Research (in Chinese), 27 (6): 769−777 doi: 10.3878/j.issn.1006-9585.2021.21173
Citation: WU Ji, CHEN Weidong, ZI Yucheng, et al. 2022. Verification and Analysis of the Impact of Cold Wave Weather Process on the Numerical Prediction Skills of Wind/Photovoltaic Power Resource Elements [J]. Climatic and Environmental Research (in Chinese), 27 (6): 769−777 doi: 10.3878/j.issn.1006-9585.2021.21173

Verification and Analysis of the Impact of Cold Wave Weather Process on the Numerical Prediction Skills of Wind/Photovoltaic Power Resource Elements

doi: 10.3878/j.issn.1006-9585.2021.21173
Funds:  Science and Technology Project of the Headquarters of State Grid Co., LTD. (Grant 5100-202055335A-0-0-00)
  • Received Date: 2021-10-28
    Available Online: 2021-11-23
  • Publish Date: 2022-12-12
  • Based on the reanalysis data of ERA-5 and the 120-h prediction data of Global Forecast System (GFS), which is the NCEP prediction system, this paper examines the prediction skills of near-surface wind speed and net downward short-wave radiation flux of the numerical model during nine cold waves in East China from December 2020 to March 2021. The following test results are obtained: 1) The GFS prediction system can accurately predict the cold wave process (cooling range and minimum temperature) 1–4 days in advance, with an average prediction accuracy > 80%. 2) The near-surface wind speed increases significantly during the cold wave. Even though the Threat Score (TS) of the wind speed of grades 0–2 is significantly low, the TS score of the wind speed of grades 3–5 and >6 is higher than the general weather process. The relative error in the prediction of the net downward short-wave radiation flux is larger than the general weather processes, particularly on the day of the cold wave outbreak. 3) The prediction skills exhibit significant diurnal variation, during the cold wave. The prediction skill of the wind speed of grades 0–2 is the lowest in the afternoon, particularly on the strongest day of the cold wave. The TS score of the wind speed of grades 3–5 is generally the lowest at around 1800 LST and is extremely low at night on the strongest day of the cold wave. After the afternoon, particularly on the day of the cold wave outbreak, the error in the prediction of the net downward short-wave radiation flux increases significantly. 4) The prediction skills decrease and the prediction time increases during the cold wave. The 24-h prediction has the highest TS score and the minimum error, while the 72-h prediction has the lowest TS score and the maximum error.
  • loading
  • [1]
    Ayotte K W, Davy R J, Coppin P A. 2001. A simple temporal and spatial analysis of flow in complex terrain in the context of wind energy modelling [J]. Bound.-Layer Meteor., 98(2): 275−295. doi: 10.1023/A:1026583021740
    [2]
    陈春艳, 黄海波. 2016. WRF模式辐射方案对极端低温天气预报的影响 [J]. 干旱区研究, 33(4): 718−723. doi: 10.13866/j.azr.2016.04.05

    Chen Chunyan, Huang Haibo. 2016. Influence of different radiation parameterization schemes of WRF model on predicting extreme low temperature events [J]. Arid Zone Research (in Chinese), 33(4): 718−723. doi: 10.13866/j.azr.2016.04.05
    [3]
    董全, 代刊, 陶亦为, 等. 2017. 基于ECMWF集合预报的极端天气预报产品应用和检验 [J]. 气象, 43(9): 1095−1109. doi: 10.7519/j.issn.1000-0526.2017.09.007

    Dong Quan, Dai Kan, Tao Yiwei, et al. 2017. Application and verification of extreme weather forecast products of ECMWF ensemble prediction system [J]. Meteorological Monthly (in Chinese), 43(9): 1095−1109. doi: 10.7519/j.issn.1000-0526.2017.09.007
    [4]
    Harper K, Uccellini L W, Kalnay E, et al. 2007. 50th anniversary of operational numerical weather prediction [J]. Bull. Amer. Meteor. Soc., 88(5): 639−650. doi: 10.1175/BAMS-88-5-639
    [5]
    Hueging H, Haas R, Born K, et al. 2013. Regional changes in wind energy potential over Europe using regional climate model ensemble projections [J]. Journal of Applied Meteorology and Climatology, 52(4): 903−917. doi: 10.1175/JAMC-D-12-086.1
    [6]
    贾丽红, 汤浩, 王江, 等. 2009. GRAPES不同参数化方案对新疆“4.18”寒潮降雪的敏感试验 [J]. 安徽农业科学, 37(17): 8078−8080, 8159. doi: 10.3969/j.issn.0517-6611.2009.17.109

    Jia Lihong, Tang Hao, Wang Jiang, et al. 2009. Sensitive experiment of various parameterization schemes in GRAPES model on "4.18" snowstorm weather in Xinjiang [J]. Journal of Anhui Agricultural Sciences (in Chinese), 37(17): 8078−8080, 8159. doi: 10.3969/j.issn.0517-6611.2009.17.109
    [7]
    李芬, 陈正洪, 成驰, 等. 2011. 太阳能光伏发电量预报方法的发展 [J]. 气候变化研究进展, 7(2): 136−142. doi: 10.3969/j.issn.1673-1719.2011.02.010

    Li Fen, Chen Zhenghong, Cheng Chi, et al. 2011. Review on forecast methods for photovoltaic power generation [J]. Advances in Climate Change Research (in Chinese), 7(2): 136−142. doi: 10.3969/j.issn.1673-1719.2011.02.010
    [8]
    李光明, 廖华, 李景天, 等. 2011. 并网光伏发电系统发电量预测方法的探讨 [J]. 云南师范大学学报, 31(2): 33−38, 64. doi: 10.3969/j.issn.1007-9793.2011.02.006

    Li Guangming, Liao Hua, Li Jingtian, et al. 2011. Discussion on the method of grid-connected PV power system generation forecasting [J]. Journal of Yunnan Normal University (in Chinese), 31(2): 33−38, 64. doi: 10.3969/j.issn.1007-9793.2011.02.006
    [9]
    卢静, 翟海青, 刘纯, 等. 2010. 光伏发电功率预测统计方法研究 [J]. 华东电力, 38(4): 563−567.

    Lu Jing, Zhai Haiqing, Liu Chun, et al. 2010. Study on statistical method for predicting photovoltaic generation power [J]. East China Electric Power (in Chinese), 38(4): 563−567.
    [10]
    马金玉, 罗勇, 申彦波, 等. 2011. 太阳能预报方法及其应用和问题 [J]. 资源科学, 33(5): 829−837.

    Ma Jinyu, Luo Yong, Shen Yanbo, et al. 2011. A review on methods of solar energy forecasting and its application [J]. Resources Science (in Chinese), 33(5): 829−837.
    [11]
    马玉芬, 杜娟, 于晓晶, 等. 2016. GTS同化对DOGRAFS预报新疆区域一次特大暴雪的影响 [J]. 沙漠与绿洲气象, 10(6): 24−30. doi: 10.3969/j.issn.1002-0799.2016.06.004

    Ma Yufen, Du Juan, Yu Xiaojing, et al. 2016. Impact of GTS assimilation upon DOGRAFS in prediction of a streeme snowstorm in Xinjiang [J]. Desert and Oasis Meteorology (in Chinese), 10(6): 24−30. doi: 10.3969/j.issn.1002-0799.2016.06.004
    [12]
    Manwell J F, Rogers A L, McGowan J G, et al. 2002. An offshore wind resource assessment study for New England [J]. Renewable Energy, 27(2): 175−187. doi: 10.1016/S0960-1481(01)00183-5
    [13]
    苗春生, 赵瑜, 王坚红. 2010. 080125南方低温雨雪冰冻天气持续降水的数值模拟 [J]. 大气科学报, 33(1): 25−33. doi: 10.3969/j.issn.1674-7097.2010.01.004

    Miao Chunsheng, Zhao Yu, Wang Jianhong. 2010. Numerical simulation of 080125 cold air, freezing rain and snow in Southern China [J]. Transactions of Atmospheric Sciences (in Chinese), 33(1): 25−33. doi: 10.3969/j.issn.1674-7097.2010.01.004
    [14]
    穆海振, 徐家良, 柯晓新, 等. 2006. 高分辨率数值模式在风能资源评估中的应用初探 [J]. 应用气象学报, 17(2): 152−159. doi: 10.3969/j.issn.1001-7313.2006.02.004

    Mu Haizhen, Xu Jialiang, Ke Xiaoxin, et al. 2006. Application of high resolution numerical model to wind energy potential assessment [J]. Journal of Applied Meteorological Science (in Chinese), 17(2): 152−159. doi: 10.3969/j.issn.1001-7313.2006.02.004
    [15]
    祁莉, 马琼, 张文君. 2017. GRAPES模式对2011/2012年冬季寒潮天气过程预报能力的检验 [J]. 大气科学学报, 40(6): 791−802. doi: 10.13878/j.cnki.dqkxxb.20150104001

    Qi Li, Ma Qiong, Zhang Wenjun. 2017. Verification of forecasting capability of cold wave process in the winter of 2011/2012 with GRAPES [J]. Transactions of Atmospheric Sciences (in Chinese), 40(6): 791−802. doi: 10.13878/j.cnki.dqkxxb.20150104001
    [16]
    曲巧娜, 范苏丹, 车军辉, 等. 2016. 数值模式对2016年1月世纪寒潮过程的预报能力检验 [J]. 山东气象, 36(3): 42−48. doi: 10.19513/j.cnki.issn1005-0582.2016.03.007

    Qu Qiaona, Fan Sudan, Che Junhui, et al. 2016. The prediction ability of numerical model for the cold wave process in January 2016 [J]. Journal of Shandong Meteorology (in Chinese), 36(3): 42−48. doi: 10.19513/j.cnki.issn1005-0582.2016.03.007
    [17]
    唐沛, 袁静, 陆鸿彬, 等. 2019. 遂宁市寒潮客观预报方法及效果检验分析 [J]. 高原山地气象研究, 39(4): 53−58. doi: 10.3969/j.issn.1674-2184.2019.04.008

    Tang Pei, Yuan Jing, Lu Hongbin, et al. 2019. Objective forecasting method of cold wave and effect examination of Suining [J]. Plateau and Mountain Meteorology Research (in Chinese), 39(4): 53−58. doi: 10.3969/j.issn.1674-2184.2019.04.008
    [18]
    Tobin I, Vautard R, Balog I, et al. 2015. Assessing climate change impacts on European wind energy from ensembles high-resolution climate projections [J]. Climatic Change, 128(1): 99−112. doi: 10.1007/s10584-014-1291-0
    [19]
    王毅, 周庆亮, 代刊, 等. 2019. 全球数据处理和预报系统发展及展望 [J]. 气象科技进展, 9(2): 6−10. doi: 10.3969/j.issn.2095-1973.2019.02.001

    Wang Yi, Zhou Qingliang, Dai Kan, et al. 2019. Development and outlook of global data-processing and forecasting system [J]. Advances in Meteorological Science and Technology (in Chinese), 9(2): 6−10. doi: 10.3969/j.issn.2095-1973.2019.02.001
    [20]
    吴国旸, 肖洋, 翁莎莎. 2005. 风电场短期风速预测探讨 [J]. 吉林电力, (6): 21−24. doi: 10.3969/j.issn.1009-5306.2005.06.007

    Wu Guoyang, Xiao Yang, Weng Shasha. 2005. Discussion about short-term forecast of wind speed on wind farm [J]. Jilin Electric Power (in Chinese), (6): 21−24. doi: 10.3969/j.issn.1009-5306.2005.06.007
    [21]
    夏晓玲, 尚媛媛, 郑奕. 2019. 贵州省数值预报风速产品检验及订正 [J]. 中低纬山地气象, 43(6): 30−36. doi: 10.3969/j.issn.1003-6598.2019.06.005

    Xia Xiaoling, Shang Yuanyuan, Zheng Yi. 2019. Verification and revision of numerical models for wind speed forecast in Guizhou Province [J]. Mid-Low Latitude Mountain Meteorology (in Chinese), 43(6): 30−36. doi: 10.3969/j.issn.1003-6598.2019.06.005
    [22]
    徐晶晶, 胡非, 肖子牛, 等. 2013. 风能模式预报的相似误差订正 [J]. 应用气象学报, 24(6): 731−740. doi: 10.3969/j.issn.1001-7313.2013.06.010

    Xu Jingjing, Hu Fei, Xiao Ziniu, et al. 2013. Analog bias correction of numerical model on wind power prediction [J]. Journal of Applied Meteorological Science (in Chinese), 24(6): 731−740. doi: 10.3969/j.issn.1001-7313.2013.06.010
    [23]
    杨秀媛, 肖洋, 陈树勇. 2005. 风电场风速和发电功率预测研究 [J]. 中国电机工程学报, 25(11): 1−5. doi: 10.3321/j.issn:0258-8013.2005.11.001

    Yang Xiuyuan, Xiao Yang, Chen Shuyong. 2005. Wind speed and generated power forecasting in wind farm [J]. Proceedings of the CSEE (in Chinese), 25(11): 1−5. doi: 10.3321/j.issn:0258-8013.2005.11.001
    [24]
    于超. 2010. 2010年6~8月T639、ECMWF及日本模式中期预报性能检验 [J]. 气象, 36(11): 104−108. doi: 10.7519/j.issn.1000-0526.2010.11.016

    Yu Chao. 2010. The performance verification of the medium-range forecasting for T639, ECMWF and Japan models from June to August 2010 [J]. Meteorological Monthly (in Chinese), 36(11): 104−108. doi: 10.7519/j.issn.1000-0526.2010.11.016
    [25]
    张秉祥, 王立荣, 杨荣珍, 等. 2010. 数值预报产品对寒潮天气过程的预报能力检验 [J]. 干旱气象, 28(1): 96−101. doi: 10.3969/j.issn.1006-7639.2010.01.017

    Zhang Bingxiang, Wang Lirong, Yang Rongzhen, et al. 2010. Forecasting capability test of cold wave process by numerical weather prediction products [J]. Journal of Arid Meteorology (in Chinese), 28(1): 96−101. doi: 10.3969/j.issn.1006-7639.2010.01.017
    [26]
    中国气象局. 2017. 冷空气等级. GB/T 20484-2017 [S]. 北京: 气象出版社, 1−8.

    China Meteorological Administration. 2017. Grade of cold air. GB/T 20484-2017 [S]. Beijing: China Meteorological Press, 1−8.
    [27]
    中国气象局. 2017. 地面气象观测规范风向和风速. GB/T 35227-2017 [S]. 北京: 气象出版社, 1−16.

    China Meteorological Administration. 2017. Specifications for surface meteorological observation—Wind direction and wind speed. GB/T 35227-2017 [S]. Beijing: China Meteorological Press, 1−16.
    [28]
    中国气象局. 2019. 天气预报检验风预报. GB/T37302-2019 [S]. 北京: 气象出版社, 1−12.

    China Meteorological Administration. 2019. Weather forecast verification—Wind forecast. GB/T37302-2019 [S]. Beijing: China Meteorological Press, 1−12.
    [29]
    朱雯娜, 黄海波. 2012. 资料同化对一次寒潮数值预报效果的评估 [J]. 沙漠与绿洲气象, 6(3): 50−53. doi: 10.3969/j.issn.1002-0799.2012.03.011

    Zhu Wenna, Huang Haibo. 2012. Effect of numerical prediction with data assimilation of a cold wave [J]. Desert and Oasis Meteorology (in Chinese), 6(3): 50−53. doi: 10.3969/j.issn.1002-0799.2012.03.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (91) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return