Advanced Search
Volume 28 Issue 3
May  2023
Turn off MathJax
Article Contents
XU Wenjing, LÜ Daren. 2023. Analysis of Cloud Distribution and its Diurnal Variation over the Tibetan Plateau in Summer Based on Geostationary Satellite Data [J]. Climatic and Environmental Research (in Chinese), 28 (3): 229−241 doi: 10.3878/j.issn.1006-9585.2022.21050
Citation: XU Wenjing, LÜ Daren. 2023. Analysis of Cloud Distribution and its Diurnal Variation over the Tibetan Plateau in Summer Based on Geostationary Satellite Data [J]. Climatic and Environmental Research (in Chinese), 28 (3): 229−241 doi: 10.3878/j.issn.1006-9585.2022.21050

Analysis of Cloud Distribution and its Diurnal Variation over the Tibetan Plateau in Summer Based on Geostationary Satellite Data

doi: 10.3878/j.issn.1006-9585.2022.21050
Funds:  Key Research Project of Frontier Science of Chinese Academy of Sciences (Grant QYZDY-SSW-DQC027), National Key R&D Program of China (Grant 2018YFC1506605), the Second Tibetan Plateau Scientific Expedition and Research Program (STEP)(Grant 2019QZKK0604), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA17010103)
  • Received Date: 2021-03-13
    Available Online: 2022-11-30
  • Publish Date: 2023-05-25
  • The Tibetan Plateau (TP) has a significant impact on the climate at the continental to global scale. During summer, the diurnal variation of clouds over the TP not only affects local convection and precipitation processes but also is closely related to floods in the Yangtze River basin of China, the Asian summer monsoon, and the large-scale climate regime in the Northern Hemisphere. Therefore, understanding the bulk characteristics of clouds over the TP is essential to study cloud-climate feedback and their impact on climate change and dynamics. Due to its remote geographical location, satellite cloud retrievals are highly relied upon for studying the TP. Recent satellite observations have revealed many unique features and roles of clouds over the TP. However, sun-synchronous satellites with low temporal resolution can only capture cloud characteristics twice a day, which is insufficient to understand the diurnal variations of clouds that vary spatially and temporally, especially during summer. The Fengyun-4A (FY-4A) is the first satellite of the new generation of Chinese geostationary meteorological satellites. The Advanced Geosynchronous Radiation Imager (AGRI) on board FY-4A has higher radiation, spectrum, and spatial resolution with shortened revisit time, which provides an opportunity to monitor clouds and their daily cycle with a new level of ability. Although FY-4A/AGRI has the capability to provide a complete image of the TP with smaller viewing zenith angles, cloud retrievals over the TP derived from FY-4A have not yet been exploited and utilized. In this study, pixel-level cloud retrievals obtained from FY-4A/AGRI are used to investigate and analyze the occurrence distribution and diurnal variation patterns of clouds over the TP during summer. The results show that clouds occur most frequently over the south and southeast of the TP all day long, and the TP has an obvious diurnal cycle. Cloud frequencies are highest at noon and lowest at 4 a.m., with peak cloud frequencies distributed along major mountains, showing terrain-dependent characteristics. Cloud tops with a most probable height of more than 12 km are concentrated in the Yarlung Zangbo River Valley and its northern side, near the Nyainqentanglha Mountain Range, the vicinity of Nyainqentangula Mountains, and the west of the eastern boundary of Hengduan Mountains. The diurnal cycle of cloud heights shows an apparent delay against that of cloud occurrence frequencies. This study also discusses the strong topographic influences on the spatiotemporal distribution patterns of clouds over the TP.
  • loading
  • [1]
    陈葆德, 梁萍, 李跃清. 2008. 青藏高原云的研究进展 [J]. 高原山地气象研究, 28(1): 66−71. doi: 10.3969/j.issn.1674-2184.2008.01.012

    Chen Baode, Liang Ping, Li Yueqing. 2008. An overview of research on clouds over the Tibetan Plateau [J]. Plateau and Mountain Meteorology Research (in Chinese), 28(1): 66−71. doi: 10.3969/j.issn.1674-2184.2008.01.012
    [2]
    Chen D D, Guo J P, Wang H Q, et al. 2018. The cloud top distribution and diurnal variation of clouds over East Asia: Preliminary results from advanced Himawari imager [J]. J. Geophys. Res. Atmos., 123(7): 3724−3739. doi: 10.1002/2017JD028044
    [3]
    陈玲, 周筠珺. 2015. 青藏高原和四川盆地夏季降水云物理特性差异 [J]. 高原气象, 34(3): 621−632. doi: 10.7522/j.issn.1000-0534.2014.00036

    Chen Ling, Zhou Yunjun. 2015. Different physical properties of summer precipitation clouds over Qinghai–Xizang Plateau and Sichuan basin [J]. Plateau Meteorology (in Chinese), 34(3): 621−632. doi: 10.7522/j.issn.1000-0534.2014.00036
    [4]
    傅云飞, 刘奇, 自勇, 等. 2008. 基于TRMM卫星探测的夏季青藏高原降水和潜热分析 [J]. 高原山地气象研究, 28(1): 8−18. doi: 10.3969/j.issn.1674-2184.2008.01.002

    Fu Yunfei, Liu Qi, Zi Yong, et al. 2008. Summer precipitation and latent heating over the Tibetan Plateau based on TRMM measurements [J]. Plateau and Mountain Meteorology Research (in Chinese), 28(1): 8−18. doi: 10.3969/j.issn.1674-2184.2008.01.002
    [5]
    Gao B C, Yang P, Guo G, et al. 2003. Measurements of water vapor and high clouds over the Tibetan Plateau with the Terra MODIS instrument [J]. IEEE Trans. Geosci. Remote Sens., 41(4): 895−900. doi: 10.1109/TGRS.2003.810704
    [6]
    Guo J P, Zhai P M, Wu L, et al. 2014. Diurnal variation and the influential factors of precipitation from surface and satellite measurements in Tibet [J]. Int. J. Climatol., 349(9): 2940−2956. doi: 10.1002/joc.3886
    [7]
    Huang J F, Guo J P, Wang F, et al. 2015. CALIPSO inferred most probable heights of global dust and smoke layers [J]. J. Geophys. Res. Atmos., 120(10): 5085−5100. doi: 10.1002/2014JD022898
    [8]
    Lei Y H, Letu H, Shang H Z, et al. 2020. Cloud cover over the Tibetan Plateau and eastern China: A comparison of ERA5 and ERA-interim with satellite observations [J]. Climate Dyn., 54(5−6): 2941−2957. doi: 10.1007/s00382-020-05149-x
    [9]
    李文韬, 李兴宇, 张礼林, 等. 2018. 青藏高原云水气候特征分析 [J]. 气候与环境研究, 23(5): 574−586. doi: 10.3878/j.issn.1006-9585.2018.18039

    Li Wentao, Li Xingyu, Zhang Lilin, et al. 2018. Climatic characteristic analysis of cloud water over the Tibetan Plateau [J]. Climatic and Environmental Research (in Chinese), 23(5): 574−586. doi: 10.3878/j.issn.1006-9585.2018.18039
    [10]
    Li Y Q, Liu X D, Chen B D. 2006. Cloud type climatology over the Tibetan Plateau: A comparison of ISCCP and MODIS/TERRA measurements with surface observations [J]. Geophys. Res. Lett., 33(17): L17716. doi: 10.1029/2006GL026890
    [11]
    刘建军, 陈葆德. 2017. 基于CloudSat卫星资料的青藏高原云系发生频率及其结构 [J]. 高原气象, 36(3): 632−642. doi: 10.7522/j.issn.1000-0534.2017.00028

    Liu Jianjun, Chen Baode. 2017. Cloud occurrence frequency and structure over the Qinghai–Tibetan Plateau from CloudSat observation [J]. Plateau Meteorology (in Chinese), 36(3): 632−642. doi: 10.7522/j.issn.1000-0534.2017.00028
    [12]
    刘瑞霞, 刘玉洁, 杜秉玉. 2002. 利用ISCCP资料分析青藏高原云气候特征 [J]. 南京气象学院学报, 25(2): 226−234. doi: 10.3969/j.issn.1674-7097.2002.02.013

    Liu Ruixia, Liu Yujie, Du Bingyu. 2002. Cloud climatic characteristics of the Tibetan Plateau from ISCCP data [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 25(2): 226−234. doi: 10.3969/j.issn.1674-7097.2002.02.013
    [13]
    陆龙骅, 周国贤, 张正秋. 1995. 1992年夏季珠穆朗玛峰地区的太阳直接辐射和总辐射 [J]. 太阳能学报, 16(3): 229−233. doi: 10.19912/j.0254-0096.1995.03.001

    Lu Longhua, Zhou Guoxian, Zhang Zhengqiu. 1995. Direct and global solar radiations in the region of MT. Qomolangma during the summer 1992 [J]. Acta Energiae Solaris Sinica (in Chinese), 16(3): 229−233. doi: 10.19912/j.0254-0096.1995.03.001
    [14]
    Min M, Li J, Wang F, et al. 2020. Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms [J]. Remote Sensing of Environment, 239: 111616. doi: 10.1016/j.rse.2019.111616
    [15]
    Min M, Wu, C Q, Li C, et al. 2017. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series [J]. Journal of Meteorological Research, 31(4): 708−719. doi: 10.1007/s13351-017-6161-z
    [16]
    Shang H Z, Letu H, Nakajima T Y, et al. 2018. Diurnal cycle and seasonal variation of cloud cover over the Tibetan Plateau as determined from Himawari-8 new-generation geostationary satellite data [J]. Scientific Reports, 8: 1105. doi: 10.1038/s41598-018-19431-w
    [17]
    田红瑛, 田文寿, 雒佳丽, 等. 2014. 青藏高原地区上对流层—下平流层区域水汽分布和变化特征 [J]. 高原气象, 33(1): 1−13. doi: 10.7522/j.issn.1000-0534.2013.00074

    Tian Hongying, Tian Wenshou, Luo Jiali, et al. 2014. Characteristics of water vapor distribution and variation in upper troposphere and lower stratosphere over Qinghai–Xizang Plateau [J]. Plateau Meteorology (in Chinese), 33(1): 1−13. doi: 10.7522/j.issn.1000-0534.2013.00074
    [18]
    Wang X, Min M, Wang F, et al. 2019. Intercomparisons of cloud mask products among Fengyun-4A, Himawari-8, and MODIS [J]. IEEE Trans. Geosci. Remote Sens., 57(11): 8827−8839. doi: 10.1109/TGRS.2019.2923247
    [19]
    Wang Y, Zeng X, Xu X, et al. 2020. Why are there more summer afternoon low clouds over the Tibetan Plateau compared to eastern China? [J]. Geophysical Research Letters, 47(23): e2020GL089665.
    [20]
    魏丽, 钟强. 1997. 青藏高原云的气候学特征 [J]. 高原气象, 16(1): 10−15. doi: 10.3321/j.issn:1000-0534.1997.01.002

    Wei Li, Zhong Qiang. 1997. Characteristics of cloud climatology over Qinghai–Xizang Plateau [J]. Plateau Meteorology (in Chinese), 16(1): 10−15. doi: 10.3321/j.issn:1000-0534.1997.01.002
    [21]
    吴国雄, 刘屹岷, 何编, 等. 2018. 青藏高原感热气泵影响亚洲夏季风的机制 [J]. 大气科学, 42(3): 488−504. doi: 10.3878/j.issn.1006-9895.1801.17279

    Wu Guoxiong, Liu Yimin, He Bian, et al. 2018. Review of the impact of the Tibetan Plateau sensible heat driven air–pump on the Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(3): 488−504. doi: 10.3878/j.issn.1006-9895.1801.17279
    [22]
    吴国雄, 刘屹岷, 刘新, 等. 2005. 青藏高原加热如何影响亚洲夏季的气候格局 [J]. 大气科学, 29(1): 47−56. doi: 10.3878/j.issn.1006-9895.2005.01.06

    Wu Guoxiong, Liu Yimin, Liu Xin, et al. 2005. How the heating over the Tibetan Plateau affects the Asian climate in summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29(1): 47−56. doi: 10.3878/j.issn.1006-9895.2005.01.06
    [23]
    吴国雄, 卓海峰, 王子谦, 等. 2016. 夏季亚洲大地形双加热及近对流层顶位涡强迫的激发(Ⅰ): 青藏高原主体加热 [J]. 中国科学: 地球科学, 46(9): 1209−1222. doi: 10.1360/N072015-00519

    Wu Guoxiong, Zhuo Haifeng, Wang Ziqian, et al. 2016. Two types of summertime heating over the Asian large-scale orography and excitation of potential–vorticity forcing I. Over Tibetan Plateau [J]. Science China Earth Sciences, 46(9): 1209−1222. doi: 10.1360/N072015-00519
    [24]
    Xu W J, Lyu D R. 2021. Evaluation of cloud mask and cloud top height from Fengyun-4A with MODIS cloud retrievals over the Tibetan Plateau [J]. Remote Sens., 13(8): 1418. doi: 10.3390/rs13081418
    [25]
    Xu X D, Lu C G, Shi X H, et al. 2008. World water tower: An atmospheric perspective [J]. Geophys. Res. Lett., 35(20): L20815. doi: 10.1029/2008GL035867
    [26]
    Yan Y F, Liu Y M. 2019. Vertical structures of convective and stratiform clouds in boreal summer over the Tibetan Plateau and its neighboring regions [J]. Adv. Atmos. Sci., 36(10): 1089−1102. doi: 10.1007/s00376-019-8229-4
    [27]
    Yang J, Zhang Z Q, Wei C Y, et al. 2017. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4 [J]. Bull. Amer. Meteor. Soc., 98(8): 1637−1658. doi: 10.1175/BAMS-D-16-0065.1
    [28]
    Yang Y K, Zhao C F, Fan H. 2020. Spatiotemporal distributions of cloud properties over China based on Himawari-8 advanced Himawari imager data [J]. Atmospheric Research, 240: 104927. doi: 10.1016/j.atmosres.2020.104927
    [29]
    Ye D Z. 1981. Some characteristics of the summer circulation over the Qinghai–Xizang (Tibet) Plateau and its neighborhood [J]. Bull. Amer. Meteor. Soc., 62(1): 14−19. doi: 10.1175/1520-0477(1981)062<0014:SCOTSC>2.0.CO;2
    [30]
    Yu L, Fu Y F, Yang Y J, et al. 2020. Trumpet-shaped topography modulation of the frequency, vertical structures, and water path of cloud systems in the summertime over the southeastern Tibetan Plateau: A perspective of daytime–nighttime differences [J]. J. Geophys. Res. Atmos., 125(3): e2019JD031803. doi: 10.1029/2019JD031803
    [31]
    张鹏, 郭强, 陈博洋, 等. 2016. 我国风云四号气象卫星与日本Himawari-8/9卫星比较分析 [J]. 气象科技进展, 6(1): 72−75.

    Zhang Peng, Guo Qiang, Chen Boyang, et al. 2016. The Chinese next-generation geostationary meteorological satellite FY-4 compared with the Japanese Himawari-8/9 satellites [J]. Advances in Meteorological Science and Technology (in Chinese), 6(1): 72−75.
    [32]
    张镱锂, 李炳元, 郑度. 2002. 论青藏高原范围与面积 [J]. 地理研究, 21(1): 1−8. doi: 10.3321/j.issn:1000-0585.2002.01.001

    Zhang Yili, Li Bingyuan, Zheng Du. 2002. A discussion on the boundary and area of the Tibetan Plateau in China [J]. Geographical Research (in Chinese), 21(1): 1−8. doi: 10.3321/j.issn:1000-0585.2002.01.001
    [33]
    周长艳, 李跃清, 李薇, 等. 2005. 青藏高原东部及邻近地区水汽输送的气候特征 [J]. 高原气象, 24(6): 880−888. doi: 10.3321/j.issn:1000-0534.2005.06.006

    Zhou Changyan, Li Yueqing, Li Wei, et al. 2005. Climatological characteristics of water vapor transport over eastern part of Qinghai–Xizang Plateau and its surroundings [J]. Plateau Meteorology (in Chinese), 24(6): 880−888. doi: 10.3321/j.issn:1000-0534.2005.06.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (110) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return