Citation: | CHEN Yiqi, WU Xianghua, LIU Peng, et al. 2022. Analysis of the Simulation Performances of Precipitation Statistical Forecasting Models [J]. Climatic and Environmental Research (in Chinese), 27 (5): 578−590 doi: 10.3878/j.issn.1006-9585.2022.21058 |
[1] |
Aparna S G, D’Souza S, Arjun N B. 2018. Prediction of daily sea surface temperature using artificial neural networks [J]. Int. J. Remote Sens., 39(12): 4214−4231. doi: 10.1080/01431161.2018.1454623
|
[2] |
白杨, 李威, 邵祺. 2020. 基于经验正交函数和机器学习的南海海面高度异常预测 [J]. 海洋通报, 39(6): 678−688. doi: 10.11840/j.issn.1001-6392.2020.06.005
Bai Yang, Li Wei, Shao Qi. 2020. A prediction model of sea surface height anomaly based on empirical orthogonal function and machine learning [J]. Marine Science Bulletin (in Chinese), 39(6): 678−688. doi: 10.11840/j.issn.1001-6392.2020.06.005
|
[3] |
陈超辉, 李崇银, 谭言科, 等. 2010. 基于交叉验证的多模式超级集合预报方法研究 [J]. 气象学报, 68(4): 464−476. doi: 10.11676/qxxb2010.045
Chen Chaohui, Li Congyin, Tan Yanke, et al. 2010. Research of the multi-model super-ensemble prediction based on cross-validation [J]. Acta Meteorologica Sinica (in Chinese), 68(4): 464−476. doi: 10.11676/qxxb2010.045
|
[4] |
陈茜, 欧阳绳武, 马新宇, 等. 2018. 基于BP神经网络的心电信号智能诊断设计 [J]. 现代电子技术, 41(1) 76–80. Chen Qian, Ouyang Shengwu, Ma Xinning, et al. 2018. Design of electrocardiosignal intelligent diagnosis based on BP neural network[J]. Modern Electronics Technique, 41(1): 76−80. doi: 10.16652/j.issn.1004-373x.2018.01.017
|
[5] |
Choubin B, Zehtabian G, Azareh A, et al. 2018. Precipitation forecasting using classification and regression trees (CART) model: A comparative study of different approaches [J]. Environmental Earth Sciences, 77(8): 314. doi: 10.1007/s12665-018-7498-z
|
[6] |
范科科, 段利民, 张强, 等. 2017. 基于多种高分辨率卫星数据的TRMM降水数据降尺度研究——以内蒙古地区为例 [J]. 地理科学, 37(9): 1411−1421. doi: 10.13249/j.cnki.sgs.2017.09.014
Fan Keke, Duan Limin, Zhang Qiang, et al. 2017. Downscaling analysis of TRMM precipitation based on multiple high-resolution satellite data in the Inner Mongolia, China [J]. Scientia Geographica Sinica, 37(9): 1411−1421. doi: 10.13249/j.cnki.sgs.2017.09.014
|
[7] |
葛彩莲, 蔡焕杰, 王健, 等. 2010. 基于BP神经网络的降雨量预测研究 [J]. 节水灌溉, (11): 7−10.
Ge Cailian, Cai Huanjian, Wang Jian, et al. 2010. Study on rainfall forecast based on BP neural network [J]. Water Saving Irrigation (in Chinese), (11): 7−10.
|
[8] |
Hamidi O, Poorolajal J, Sadeghifar M, et al. 2015. A comparative study of support vector machines and artificial neural networks for predicting precipitation in Iran [J]. Theor. Appl. Climatol. , 119(3–4): 723–731. doi: 10.1007/s00704-014-1141-z
|
[9] |
韩玉梅. 2008. 黑龙江省年降水量时空分布分析 [J]. 黑龙江水利科技, 36(3): 4−5. doi: 10.3969/j.issn.1007-7596.2008.03.003
Han Yumei. 2008. Spatial and temporal distribution of annual precipitation in Heilongjiang Province [J]. Heilongjiang Science and Technology of Water Conservancy (in Chinese), 36(3): 4−5. doi: 10.3969/j.issn.1007-7596.2008.03.003
|
[10] |
何东坡. 2016. 基于数据挖掘方法的长江中下游夏季降水等级预测模型研究与应用 [D]. 南京信息工程大学硕士学位论文. He Donhpo. 2016. Research and application of the forecast model of summer precipitation in the middle and lower reaches of the Yangtze River based on data mining method [D]. M. S. thesis (in Chinese), Nanjing University of Information Science and Technology.
|
[11] |
He X G, Chaney N W, Schleiss M, et al. 2016. Spatial downscaling of precipitation using adaptable random forests [J]. Water Resour. Res., 52(10): 8217−8237. doi: 10.1002/2016WR019034
|
[12] |
Ho H C, Knudby A, Sirovyak P, et al. 2014. Mapping maximum urban air temperature on hot summer days [J]. Remote Sensing of Environment, 154: 38−45. doi: 10.1016/j.rse.2014.08.012
|
[13] |
Hecht-Nielsen R. 1989. Theory of the backpropagation neural network[C]. International 1989 Joint Conference on Neural Networks, 593-605 vol. 1.
|
[14] |
胡凤良, 王丽琼, 左瑞亭, 等. 2017. 几种统计预测方法对1998年南京降水的跨季节预测试验及分析 [J]. 气候与环境研究, 22(1): 23−34. doi: 10.3878/j.issn.1006-9585.2016.15251
Hu Fengliang, Wang Liqiong, Zuo Ruiting, et al. 2017. Extra-seasonal predicting tests and analyses of several statistical forecasting methods on precipitation over Nanjing in 1998 [J]. Climatic and Environmental Research (in Chinese), 22(1): 23−34. doi: 10.3878/j.issn.1006-9585.2016.15251
|
[15] |
孔德萌, 李维德, 吴金冉. 2017. 基于协整理论的极限学习机模型在降水预测中的应用 [J]. 水电能源科学, 35(9): 1−3, 12.
Kong Demeng, Li Weide, Wu Jinran. 2017. Application of extreme learning machine model in precipitation prediction based on cointegration theory [J]. Water Resources and Power (in Chinese), 35(9): 1−3, 12.
|
[16] |
Kusiak A, Zheng H Y, Song Z. 2009. Wind farm power prediction: A data-mining approach [J]. Wind Energy, 12(3): 275−293. doi: 10.1002/we.295
|
[17] |
李嘉康, 赵颖, 廖洪林, 等. 2017. 基于改进EMD算法和BP神经网络的SST预测研究 [J]. 气候与环境研究, 22(5): 587−600. doi: 10.3878/j.issn.1006-9585.2017.16180
Li Jiakang, Zhao Ying, Liao Honglin, et al. 2017. SST forecast based on BP neural network and improved EMD algorithm [J]. Climatic and Environmental Research (in Chinese), 22(5): 587−600. doi: 10.3878/j.issn.1006-9585.2017.16180
|
[18] |
李宁. 2011. BP神经网络在水文数据中的应用研究 [D]. 山西财经大学硕士学位论文. Li Ning. 2011. Research on the application of BP-neural network in the hydrologic data [D]. M. S. thesis (in Chinese), Shanxi University of Finance and Economics.
|
[19] |
李万庆, 李海涛, 孟文清. 2007. 基于支持向量机的降水量混沌时间序列预测 [J]. 统计与决策, (19): 9−11. doi: 10.3969/j.issn.1002-6487.2007.19.004
Li Wanqing, Li Haitao, Meng Wenqing. 2007. Prediction of precipitation chaotic time series based on support vector machine [J]. Statistics and Decision (in Chinese), (19): 9−11. doi: 10.3969/j.issn.1002-6487.2007.19.004
|
[20] |
梁子超, 李智炜, 赖铿, 等. 2020. 10折交叉验证用于预测模型泛化能力评价及其R软件实现 [J]. 中国医院统计, 27(4): 289−292. doi: 10.3969/j.issn.1006-5253.2020.04.001
Liang Zichao, Li Zhiwei, Lai Keng, et al. 2020. Application of 10-fold cross-validation in the evaluation of generalization ability of prediction models and the realization in R [J]. Chinese Journal of Hospital Statistics (in Chinese), 27(4): 289−292. doi: 10.3969/j.issn.1006-5253.2020.04.001
|
[21] |
刘莉, 叶文. 2010. 基于BP神经网络时间序列模型的降水量预测 [J]. 水资源与水工程学报, 21(5): 156−159.
Liu Li, Ye Wen. 2010. Precipitation prediction of time series model based on BP artificial neural network [J]. Journal of Water Resources and Water Engineering (in Chinese), 21(5): 156−159.
|
[22] |
黎玥君, 郭品文, 2017. 基于BP神经网络的浙北夏季降尺度降水预报方法的应用[J]. 大气科学学报, 40(3): 425-432
Li Yuejun, Guo Pinwen, 2017. Application of downscaling forecast for the North of Zhejiang precipitation in summer based on the BP neural network model [J]. Trans Atmos Sci (in Chinese), 40(3): 425-432. doi: 10.13878/j.cnki.Dqkxxb.20140324001.
|
[23] |
倪远臣. 2014. 基于支持向量机的东港市降水量预测模型研究 [J]. 陕西水利, (2): 134−135. doi: 10.3969/j.issn.1673-9000.2014.02.067
Ni Yuanchen. 2014. Research on precipitation forecast model of Donggang city based on support vector machine [J]. Shaanxi Water Resources (in Chinese), (2): 134−135. doi: 10.3969/j.issn.1673-9000.2014.02.067
|
[24] |
Ortiz-García E G, Salcedo-Sanz S, Casanova-Mateo C. 2014. Accurate precipitation prediction with support vector classifiers: A study including novel predictive variables and observational data [J]. Atmospheric Research, 139: 128−136. doi: 10.1016/j.atmosres.2014.01.012
|
[25] |
Schuldt C, Laptev I, Caputo B. 2004. Recognizing human actions: A local SVM approach [E]. International Conference on Pattern Recognition. IEEE Computer Society. doi: 10.1109/ICPR.2004.1334462
|
[26] |
沈皓俊, 罗勇, 赵宗慈, 等. 2020. 基于LSTM网络的中国夏季降水预测研究 [J]. 气候变化研究进展, 16(3): 263−275. doi: 10.12006/j.issn.1673-1719.2019.067
Shen Haojun, Luo Yong, Zhao Zongci, et al. 2020. Prediction of summer precipitation in China based on LSTM network [J]. Climate Change Research (in Chinese), 16(3): 263−275. doi: 10.12006/j.issn.1673-1719.2019.067
|
[27] |
石晓燕, 郑庆康, 杨涛. 2013. 基于BP神经网络对黄河源区降水的降尺度模拟研究 [J]. 三峡大学学报(自然科学版), 35(5): 37−41.
Shi X Y, Zheng Q K, Yang T. 2013. Downscaling analysis of precipitation in source region of Yellow River simulated by using BP neural network [J]. Journal of China Three Gorges University (Natural Sciences) (in Chinese), 35(5): 37−41.
|
[28] |
史逸民, 史达伟, 郝玲, 等. 2018. 基于数据挖掘CART算法的区域夏季降水日数分类与预测模型研究 [J]. 南京信息工程大学学报(自然科学版), 10(06): 760−765. doi: 10.13878/j.cnki.jnuist.2018.06.015
Shi Yimin, Shi Dawei, Hao Linh, et al. 2018. Model prediction of regional summer precipitation days based on CART algorithm [J]. Journal of Nanjing University of Information Science and Technology (Natural Sciences) (in Chinese), 10(06): 760−765. doi: 10.13878/j.cnki.jnuist.2018.06.015
|
[29] |
孙健, 曹卓, 李恒, 等. 2021. 人工智能技术在数值天气预报中的应用 [J]. 应用气象学报, 32(1): 1−11. doi: 10.11898/1001-7313.20210101
Sun Jian, Cao Zhuo, Li Heng, et al. 2021. Application of artificial intelligence technology to numerical weather prediction [J]. Journal of Applied Meteorological Science (in Chinese), 32(1): 1−11. doi: 10.11898/1001-7313.20210101
|
[30] |
Voyant C, Notton G, Kalogirou S, et al. 2017. Machine learning methods for solar radiation forecasting: A review [J]. Renewable Energy, 105: 569−582. doi: 10.1016/j.renene.2016.12.095
|
[31] |
许晓宁. 2018. 基于支持向量机的逐日降水预报模型研究 [D]. 华东师范大学硕士学位论文. Xu Xiaoning. 2018. Research on day-by-day precipitation forecast model based on support vector machine [D]. M. S. thesis (in Chinese), East China Normal University.
|
[32] |
杨淑群, 芮景析, 冯汉中. 2006. 支持向量机(SVM)方法在降水分类预测中的应用 [J]. 西南农业大学学报(自然科学版), 28(2): 252−257. doi: 10.3969/j.issn.1673-9868.2006.02.020
Yang Shuqun, Rui Jingxi, Feng Hanzhong. 2006. Application of support vector machine (SVM) in rainfall categorical forecast [J]. Journal of Southwest Agricultural University (Natural Science) (in Chinese), 28(2): 252−257. doi: 10.3969/j.issn.1673-9868.2006.02.020
|
[33] |
杨永生, 何平. 2008. 投影寻踪回归与BP神经网络方法在前汛期降水预测中的比较研究 [J]. 气象与环境学报, 24(1): 14−17. doi: 10.3969/j.issn.1673-503X.2008.01.004
Yang Yongsheng, He Ping. 2008. Comparison on early flood season precipitation prediction between projection pursuit regression method and back propagation neural network method [J]. Journal of Meteorology and Environment (in Chinese), 24(1): 14−17. doi: 10.3969/j.issn.1673-503X.2008.01.004
|
[34] |
曾晓青, 邵明轩, 王式功, 等. 2008. 基于交叉验证技术的KNN方法在降水预报中的试验 [J]. 应用气象学报, 19(4): 471−478. doi: 10.3969/j.issn.1001-7313.2008.04.011
Zeng Xiaoqing, Shao Mingxuan, Wang Shigong, et al. 2008. Forecasting precipitation experiment with KNN based on crossing verification technology [J]. Journal of Applied Meteorological Science (in Chinese), 19(4): 471−478. doi: 10.3969/j.issn.1001-7313.2008.04.011
|
[35] |
张辉, 2013. 基于BP神经网络的遥感影像分类研究 [D]. 山东师范大学硕士学位论文. Zhang Hui. 2013. Research on back-propagation neural network-based remote sensing image classification [D]. M. S. thesis (in Chinese), Shandong Normal University.
|
[36] |
张佳华, 姚宜斌, 曹娜. 2017. 基于决策树对有无降水进行预测 [J]. 测绘地理信息, 42(5): 107−109. doi: 10.14188/j.2095-6045.2015261
Zhang Jiahua, Yao Yibin, Cao Na. 2017. Prediction of whether precipitation based on decision tree [J]. Journal of Geomatics (in Chinese), 42(5): 107−109. doi: 10.14188/j.2095-6045.2015261
|
[37] |
周丽莉, 胡军, 章昊. 2017. 具有学习过程的贝叶斯决策模型与统计模拟 [J]. 统计与决策, (23): 22−26. doi: 10.13546/j.cnki.tjyjc.2017.23.005
Zhou Lili, Hu Jun, Zhang Hao. 2017. Bayesian decision model with learning process and statistical simulation [J]. Statistics and Decision (in Chinese), (23): 22−26. doi: 10.13546/j.cnki.tjyjc.2017.23.005
|
[38] |
朱连华, 江志红, 刘征宇. 2015. 春季陆面植被对长江流域夏季降水可预报性的影响分析 [J]. 气象学报, 73(5): 895−909. doi: 10.11676/qxxb2015.063
Zhu Lianhua, Jiang Zhihong, Liu Zhengyu. 2015. The impact analysis of spring vegetation on the summer precipitation predictability over the Yangtze River basin [J]. Acta Meteorologica Sinica (in Chinese), 73(5): 895−909. doi: 10.11676/qxxb2015.063
|