Citation: | WANG Zhengqi, GAO Xuejie, HAN Zhenyu, et al. 2023. Climate Change Projection over Southeast Asia Based on the Regional Climate Model Simulation [J]. Climatic and Environmental Research (in Chinese), 28 (3): 251−262 doi: 10.3878/j.issn.1006-9585.2022.21078 |
[1] |
Barros V R, Field C B, Dokken D J, et al. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge, NY: Cambridge University Press.
|
[2] |
Chen D, Rojas M, Samset B H, et al. 2021. Framing, Context, and Methods [M]//Masson-Delmotte V, Zhai P, Pirani A, et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 147–286. doi: 10.1017/9781009157896.003
|
[3] |
Chen H P, Sun J Q, Chen X L. 2014. Projection and uncertainty analysis of global precipitation-related extremes using CMIP5 models [J]. International Journal of Climatology, 34(8): 2730−2748. doi: 10.1002/joc.3871
|
[4] |
Chen X L, Guo Z, Zhou T J, et al. 2019. Climate sensitivity and feedbacks of a new coupled model CAMS-CSM to idealized CO2 forcing: A comparison with CMIP5 models [J]. J. Meteorol. Res., 33(1): 31−45. doi: 10.1007/s13351-019-8074-5
|
[5] |
Choi G, Collins D, Ren G Y, et al. 2009. Changes in means and extreme events of temperature and precipitation in the Asia–Pacific network region, 1955−2007 [J]. International Journal of Climatology, 29(13): 1906−1925. doi: 10.1002/joc.1979
|
[6] |
Cruz F T, Narisma G T, Dado J B, et al. 2017. Sensitivity of temperature to physical parameterization schemes of RegCM4 over the CORDEX-Southeast Asia region [J]. International Journal of Climatology, 37(15): 5139−5153. doi: 10.1002/joc.5151
|
[7] |
Endo N, Matsumoto J, Lwin T. 2009. Trends in precipitation extremes over Southeast Asia [J]. Sola, 5: 168−171. doi: 10.2151/sola.2009-043
|
[8] |
Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization [J]. Geoscientific Model Development, 9(5): 1937−1958. doi: 10.5194/gmd-9-1937-2016
|
[9] |
Giorgi F. 2019. Thirty years of regional climate modeling: Where are we and where are we going next? [J]. J. Geophys. Res., 124(11): 5696−5723. doi: 10.1029/2018JD030094
|
[10] |
Giorgi F, Coppola E, Solmon F, et al. 2012. RegCM4: Model description and preliminary tests over multiple CORDEX domains [J]. Climate Research, 52: 7−29. doi: 10.3354/cr01018
|
[11] |
Giorgi F, Jones C, Asrar G R. 2009. Addressing climate information needs at the regional level: The CORDEX framework [J]. WMO Bull., 58(3): 175−183.
|
[12] |
Juneng L, Tangang F, Chung J X, et al. 2016. Sensitivity of Southeast Asia rainfall simulations to cumulus and air–sea flux parameterizations in RegCM4 [J]. Climate Research, 69(1): 59−77. doi: 10.3354/cr01386
|
[13] |
Kreft S, Eckstein D, Melchior I. 2016. Global climate risk index 2017: Who suffers most from extreme weather events? Weather-related loss events in 2015 and 1996 to 2015 [R].
|
[14] |
Lau K M, Wu H T. 2007. Detecting trends in tropical rainfall characteristics, 1979–2003 [J]. International Journal of Climatology, 27(8): 979−988. doi: 10.1002/joc.1454
|
[15] |
Ngo-Duc T, Tangang F T, Santisirisomboon J, et al. 2017. Performance evaluation of RegCM4 in simulating extreme rainfall and temperature indices over the CORDEX-Southeast Asia region [J]. International Journal of Climatology, 37(3): 1634−1647. doi: 10.1002/joc.4803
|
[16] |
Oleson K W, Lawrence D M, Bonan G B, et al. 2010. Technical description of version 4.0 of the community land model (CLM) [R]. NCAR Technical Notes NCAR/TN-478+STR. doi: 10.5065/D6FB50WZ
|
[17] |
Overland I, Azlan L, Charadine P, et al. 2017. Impact of climate change on ASEAN international affairs: Risk and opportunity multiplier [R].
|
[18] |
Singh D, Tsiang M, Rajaratnam B, et al. 2014. Observed changes in extreme wet and dry spells during the South Asian summer monsoon season [J]. Nature Climate Change, 4(6): 456−461. doi: 10.1038/nclimate2208
|
[19] |
Stevens B, Giorgetta M, Esch M, et al. 2013. Atmospheric component of the MPI-M earth system model: ECHAM6 [J]. Journal of Advances in Modeling Earth Systems, 5(2): 146−172. doi: 10.1002/jame.20015
|
[20] |
Supari, Tangang F, Juneng L, et al. 2017. Observed changes in extreme temperature and precipitation over Indonesia [J]. International Journal of Climatology, 37(4): 1979−1997. doi: 10.1002/joc.4829
|
[21] |
Supari, Tangang F, Juneng L, et al. 2020. Multi-model projections of precipitation extremes in Southeast Asia based on CORDEX-Southeast Asia simulations [J]. Environ. Res., 184: 109350. doi: 10.1016/j.envres.2020.109350
|
[22] |
Tangang F, Chung J X, Juneng L, et al. 2020. Projected future changes in rainfall in Southeast Asia based on CORDEX-SEA multi-model simulations [J]. Climate Dyn., 55(5−6): 1247−1267. doi: 10.1007/s00382-020-05322-2
|
[23] |
Tangang F, Santisirisomboon J, Juneng L, et al. 2019. Projected future changes in mean precipitation over Thailand based on multi-model regional climate simulations of CORDEX Southeast Asia [J]. International Journal of Climatology, 39(14): 5413−5436. doi: 10.1002/joc.6163
|
[24] |
Tangang F, Supari S, Chung J X, et al. 2018. Future changes in annual precipitation extremes over Southeast Asia under global warming of 2°C [J]. APN Science Bulletin, 8(1): 3−8. doi: 10.30852/sb.2018.436
|
[25] |
Tiedtke M. 1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models [J]. Mon. Wea. Rev., 117(8): 1779−1800. doi: 10.1175/1520-0493(1989)117<1779:acmfsf>2.0.co;2
|
[26] |
van Vuuren D P, Edmonds J A, Kainuma M, et al. 2011. A special issue on the RCPs [J]. Climatic Change, 109(1–2): 1−4. doi: 10.1007/s10584-011-0157-y
|
[27] |
Wang Z Q, Gao X J, Han Z Y, et al. 2020. Assessing the sensitivity of RegCM4 to cumulus and ocean surface schemes over the Southeast Asia domain of the coordinated regional climate downscaling experiment [J]. Atmospheric and Oceanic Science Letters, 13(1): 71−79. doi: 10.1080/16742834.2020.1697615
|
[28] |
Wu J, Gao X J. 2020. Present day bias and future change signal of temperature over China in a series of multi-GCM driven RCM simulations [J]. Climate Dyn., 54(1-2): 1113−1130. doi: 10.1007/s00382-019-05047-x
|
[29] |
Yatagai Akiyo, Khadgarai Sunilkumar. 2009. A 44–year daily gridded precipitation dataset for Asia based on a dense network of rain gauges, SOLA, 5, 137-140,doi: 10.2151/sola.2009-035
|
[30] |
Zhang X B, Alexander L, Hegerl G C, et al. 2011. Indices for monitoring changes in extremes based on daily temperature and precipitation data [J]. WIREs Climate Change, 2(6): 851−870. doi: 10.1002/wcc.147
|