Advanced Search
Volume 28 Issue 3
May  2023
Turn off MathJax
Article Contents
ZHAO Zixue, MA Jianzhong. 2023. Spatiotemporal Distribution Characteristics of Ammonia during the Asian Summer Monsoon [J]. Climatic and Environmental Research (in Chinese), 28 (3): 263−274 doi: 10.3878/j.issn.1006-9585.2022.21119
Citation: ZHAO Zixue, MA Jianzhong. 2023. Spatiotemporal Distribution Characteristics of Ammonia during the Asian Summer Monsoon [J]. Climatic and Environmental Research (in Chinese), 28 (3): 263−274 doi: 10.3878/j.issn.1006-9585.2022.21119

Spatiotemporal Distribution Characteristics of Ammonia during the Asian Summer Monsoon

doi: 10.3878/j.issn.1006-9585.2022.21119
Funds:  National Natural Science Foundation of China (NSFC, Grant 41875146)
  • Received Date: 2021-07-14
  • Accepted Date: 2022-05-21
  • Available Online: 2022-05-27
  • Publish Date: 2023-05-25
  • The spatial distribution characteristics of atmospheric ammonia (NH3) in East Asia from June to September 2008–2011 were investigated using data from the Michelson interferometer for passive atmospheric sounding on the ENVISAT satellite, the AIRS detector on the Aqua satellite, and the global atmospheric chemistry–climate model EMAC. The results show that the highest concentration of NH3 near the surface appears in northern India, and deep convection exists in the Bay of Bengal near northern India in summer. This deep convection can transport short-lived NH3 to the upper troposphere and lower stratosphere (UTLS) because of the high altitude of the Qinghai-Tibet Plateau. Therefore, an upward transport column of NH3 over the Qinghai-Tibet Plateau exits and is the main channel for the upward transportation of NH3. During the Asian summer monsoon, the location of the Asian summer monsoon anticyclone dominates the spatial distribution of NH3 in the UTLS area. The high-concentration center of NH3 continues to exist during the anticyclone, and its position corresponds well with the position of the anticyclone center. During the anticyclone, one or two NH3 high-concentration centers exist in the anticyclone center, implying that a change in the circulation pattern of the anticyclone has important effects on the NH3 distribution.
  • loading
  • [1]
    Adams P J, Seinfeld J H, Koch D, et al. 2001. General circulation model assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water inorganic aerosol system [J]. J. Geophys. Res. Atmos., 106(D1): 1097−1111. doi: 10.1029/2000JD900512
    [2]
    Baek B H, Aneja V P. 2004. Measurement and analysis of the relationship between ammonia, acid gases, and fine particles in eastern North Carolina [J]. J. Air Waste Manag. Assoc., 54(5): 623−633. doi: 10.1080/10473289.2004.10470933
    [3]
    Behera S N, Sharma M, Aneja V P, et al. 2013. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies [J]. Environ. Sci. Pollut. Res., 20(11): 8092−8131. doi: 10.1007/s11356-013-2051-9
    [4]
    Bian J C, Li D, Bai Z X, et al. 2020. Transport of Asian surface pollutants to the global stratosphere from the Tibetan Plateau region during the Asian summer monsoon [J]. Natl. Sci. Rev., 7(3): 516−533. doi: 10.1093/nsr/nwaa005
    [5]
    卞建春, 严仁嫦, 陈洪滨. 2011. 亚洲夏季风是低层污染物进入平流层的重要途径 [J]. 大气科学, 35(5): 897−902. doi: 10.3878/j.issn.1006-9895.2011.05.09

    Bian Jianchun, Yan Renchang, Chen Hongbin. 2011. Tropospheric pollutant transport to the stratosphere by Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(5): 897−902. doi: 10.3878/j.issn.1006-9895.2011.05.09
    [6]
    Bouwman A F, Lee D S, Asman W a H, et al. 1997. A global high-resolution emission inventory for ammonia [J]. Global Biogeochem. Cycles, 11(4): 561−587. doi: 10.1029/97GB02266
    [7]
    Hamaoui-Laguel L, Meleux F, Beekmann M, et al. 2014. Improving ammonia emissions in air quality modelling for France [J]. Atmos. Environ., 92: 584−595. doi: 10.1016/j.atmosenv.2012.08.002
    [8]
    He Q S, Ma J Z, Zheng X D, et al. 2021. Formation and dissipation dynamics of the Asian tropopause aerosol layer [J]. Environ. Res. Lett., 16(1): 014015. doi: 10.1088/1748-9326/ABCD5D
    [9]
    何一滢, 韩志伟, 刘瑞婷, 等. 2019. 秸秆燃烧对北京秋季气溶胶浓度和短波辐射影响的模拟研究 [J]. 气候与环境研究, 24(3): 369−382. doi: 10.3878/j.issn.1006-9585.2019.18154

    He Yiying, Han Zhiwei, Liu Ruiting, et al. 2019. A modeling investigation of the impact of crop residue burning on aerosol concentration and shortwave radiation in Beijing in autumn [J]. Climatic and Environmental Research (in Chinese), 24(3): 369−382. doi: 10.3878/j.issn.1006-9585.2019.18154
    [10]
    Höpfner M, Volkamer R, Grabowski U, et al. 2016. First detection of ammonia (NH3) in the Asian summer monsoon upper troposphere [J]. Atmos. Chem. Phys., 16(22): 14357−14369. doi: 10.5194/acp-16-14357-2016
    [11]
    Höpfner M, Ungermann J, Borrmann S, et al. 2019. Ammonium nitrate particles formed in upper troposphere from ground ammonia sources during Asian monsoons [J]. Nat. Geosci., 12(8): 608−612. doi: 10.1038/s41561-019-0385-8
    [12]
    胡清静. 2015. 大气中氨气、铵盐和有机胺盐的研究 [D]. 中国海洋大学博士学位论文, 114pp. Hu Qingjing. 2015. The study of ammonia, ammonium salt and aminium salt in the atmosphere [D]. Ph. D. dissertation (in Chinese), Ocean University of China, 114pp.
    [13]
    Jöckel P, Kerkweg A, Pozzer A, et al. 2010. Development cycle 2 of the Modular Earth Submodel System (MESSy2) [J]. Geosci. Model Dev., 3(2): 717−752. doi: 10.5194/gmd-3-717-2010
    [14]
    Lau W K M, Yuan C, Li Z Q. 2018. Origin, maintenance and variability of the asian tropopause aerosol layer (ATAL): The roles of monsoon dynamics [J]. Sci. Rep., 8(1): 3960. doi: 10.1038/s41598-018-22267-z
    [15]
    Ma J, Zhou X, Xu X, et al. 2022. Chapter 15—Ozone and aerosols over the Tibetan Plateau [M]//SINGH R P. Asian Atmospheric Pollution. Amsterdam: Elsevier Inc, 287–302.
    [16]
    Ma J Z, Brühl C, He Q S, et al. 2019. Modeling the aerosol chemical composition of the tropopause over the Tibetan Plateau during the Asian summer monsoon [J]. Atmos. Chem. Phys., 19(17): 11587−11612. doi: 10.5194/acp-19-11587-2019
    [17]
    Mahnke C, Weigel R, Cairo F, et al. 2021. The Asian tropopause aerosol layer within the 2017 monsoon anticyclone: Microphysical properties derived from aircraft-borne in situ measurements [J]. Atmos. Chem. Phys., 21(19): 15259−15282. doi: 10.5194/acp-21-15259-2021
    [18]
    Martin S T, Hung H M, Park R J, et al. 2004. Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing [J]. Atmos. Chem. Phys., 4(1): 183−214. doi: 10.5194/acp-4-183-2004
    [19]
    Paulot F, Jacob D J, Pinder R W, et al. 2014. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3) [J]. J. Geophys. Res. Atmos., 119(7): 4343−4364. doi: 10.1002/2013JD021130
    [20]
    Paulot F, Jacob D J, Johnson M T, et al. 2015. Global oceanic emission of ammonia: Constraints from seawater and atmospheric observations [J]. Global Biogeochem. Cycles, 29(8): 1165−1178. doi: 10.1002/2015GB005106
    [21]
    Randel W J, Park M. 2006. Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS) [J]. J. Geophys. Res., 111(D12): D12314. doi: 10.1029/2005JD006490
    [22]
    Randel W J, Park M, Emmons L, et al. 2010. Asian monsoon transport of pollution to the stratosphere [J]. Science, 328(5978): 611−613. doi: 10.1126/science.1182274
    [23]
    Randel W J, Zhang K, Fu R. 2015. What controls stratospheric water vapor in the NH summer monsoon regions? [J]. J. Geophys. Res. Atmos., 120(15): 7988−8001. doi: 10.1002/2015JD023622
    [24]
    Sharma M, Kishore S, Tripathi S N, et al. 2007. Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: A study at Kanpur, India [J]. J. Atmos. Chem., 58(1): 1−17. doi: 10.1007/s10874-007-9074-x
    [25]
    陶俊, 张仁健, 董林, 等. 2010. 夏季广州城区细颗粒物PM2.5和PM1.0中水溶性无机离子特征 [J]. 环境科学, 31(7): 1417−1424. doi: 10.13227/j.hjkx.2010.07.002

    Tao Jun, Zhang Renjian, Dong Lin, et al. 2010. Characterization of water-soluble inorganic ions in PM2.5 and PM1.0 in summer in Guangzhou [J]. Environ. Sci. (in Chinese), 31(7): 1417−1424. doi: 10.13227/j.hjkx.2010.07.002
    [26]
    Tidiga M, Berthet G, Jégou F, et al. 2022. Variability of the aerosol content in the tropical lower stratosphere from 2013 to 2019: Evidence of volcanic Eruption impacts [J]. Atmosphere, 13(2): 250. doi: 10.3390/atmos13020250
    [27]
    Van Damme M, Erisman J W, Clarisse L, et al. 2015. Worldwide spatiotemporal atmospheric ammonia (NH3) columns variability revealed by satellite [J]. Geophys. Res. Lett., 42(20): 8660−8668. doi: 10.1002/2015GL065496
    [28]
    Vernier J P, Thomason L W, Kar J. 2011. CALIPSO detection of an Asian tropopause aerosol layer [J]. Geophys. Res. Lett., 38(7): L07804. doi: 10.1029/2010GL046614
    [29]
    Warner J X, Wei Z G, Strow L L, et al. 2016. The global tropospheric ammonia distribution as seen in the 13-year AIRS measurement record [J]. Atmos. Chem. Phys., 16(8): 5467−5479. doi: 10.5194/acp-16-5467-2016
    [30]
    Xu L, Penner J E. 2012. Global simulations of nitrate and ammonium aerosols and their radiative effects [J]. Atmos. Chem. Phys., 12(20): 9479−9504. doi: 10.5194/acp-12-9479-2012
    [31]
    Zhang J Q, Wu X, Bian J C, et al. 2020. Aerosol variations in the upper troposphere and lower stratosphere over the Tibetan Plateau [J]. Environ. Res. Lett., 15(9): 094068. doi: 10.1088/1748-9326/ab9b43
    [32]
    张美根, 韩志伟. 2003. TRACE-P期间硫酸盐、硝酸盐和铵盐气溶胶的模拟研究 [J]. 高原气象, 22(1): 1−6. doi: 10.3321/j.issn:1000-0534.2003.01.001

    Zhang Meigen, Han Zhiwei. 2003. A numerical study on distribution of sulfate, nitrate and ammonium aerosols over East Asia during the TRACE-P campaign [J]. Plateau Meteorology (in Chinese), 22(1): 1−6. doi: 10.3321/j.issn:1000-0534.2003.01.001
    [33]
    庄婧雯. 2016. 基于中纬度激光雷达和CALIPSO的纳布罗火山气溶胶的观测研究 [D]. 武汉大学博士学位论文, 95pp.

    Zhuang Jingwen. 2016. Nabro aerosol evolution observed jointly by lidars at a mid-latitude site and CALIPSO [D]. Ph. D. dissertation (in Chinese), Wuhan University, 95pp.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (255) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return