Advanced Search
Volume 28 Issue 3
May  2023
Turn off MathJax
Article Contents
ZHAO Yang, WANG Yuan, LU Chunsong, et al. 2023. Simulation Study on Influencing Factors of Cloud Optical Thickness [J]. Climatic and Environmental Research (in Chinese), 28 (3): 303−314 doi: 10.3878/j.issn.1006-9585.2022.22005
Citation: ZHAO Yang, WANG Yuan, LU Chunsong, et al. 2023. Simulation Study on Influencing Factors of Cloud Optical Thickness [J]. Climatic and Environmental Research (in Chinese), 28 (3): 303−314 doi: 10.3878/j.issn.1006-9585.2022.22005

Simulation Study on Influencing Factors of Cloud Optical Thickness

doi: 10.3878/j.issn.1006-9585.2022.22005
Funds:  National Key Research and Development Program of China (Grant 2019YFA0606803), National Natural Science Foundation of China (NSFC, Grants 42175099, 42075077, 42075073, 42075066, and 42205072)
  • Received Date: 2021-01-10
    Available Online: 2022-08-29
  • Publish Date: 2023-05-25
  • Cloud optical thickness impacts the radiation balance of the earth–atmosphere system and is a key factor in climate change prediction. Furthermore, variation in cloud supersaturation predominantly relies on the physicochemical and activation characteristics of aerosols and the vertical velocity of updraft. These factors affect the activation process and condensation growth process within the cloud, ultimately changing the cloud optical thickness. Based on the simulation results of the adiabatic bubble model, the influences of vertical velocity, aerosol number concentration, and aerosol chemical composition on the cloud optical thickness were studied. The simulation results can reproduce the first indirect radiation effect of aerosols and show a positive correlation between cloud optical thickness and vertical velocity. When the liquid water content in the cloud remained constant, increasing the vertical velocity and aerosol number concentration increased the cloud droplet number concentration while reducing the cloud droplet effective radius. This phenomenon increased the total surface area of cloud droplets, ultimately enhancing the cloud albedo. However, with the rapid increase in vertical velocity and aerosol number concentration, the growth rate of cloud droplet number concentration and the cloud droplet effective radius slowed down simultaneously, consequently leading to a reduction in the growth rate of the cloud droplet total surface area, cloud albedo, and cloud optical thickness. Moreover, when the aerosol chemical composition comprises organic carbon, ammonium sulfate, and sea salt at the same aerosol number concentration, the cloud droplet effective radius decreases, leading to an increase in the total surface area and a consequent increase in the optical thickness of the cloud. The findings of this work have clarified the influence mechanism of the aforementioned factors on cloud optical thickness and deepened the theoretical understanding of the first indirect effects of aerosols.
  • loading
  • [1]
    Albrecht B A. 1989. Aerosols, cloud microphysics, and fractional cloudiness [J]. Science, 245(4923): 1227−1230. doi: 10.1126/science.245.4923.1227
    Arias P A, Bellouin N, Coppola E, et al. 2021. Techincal summary [M]//Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte V, Zhai P, Pirani A, et al, Eds. Cambridge: Cambridge University Press, 133−144. doi: 10.1017/9781009157896.002
    Brenguier J L, Chuang P Y, Fouquart Y, et al. 2000a. An overview of the ACE‐2 CLOUDYCOLUMN closure experiment [J]. Tellus B, 52(2): 815−827. doi: 10.1034/j.1600-0889.2000.00047.x
    Brenguier J L, Pawlowska H, Schüller L, et al. 2000b. Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration [J]. J. Atmos. Sci., 57(6): 803−821. doi: 10.1175/1520-0469(2000)057<0803:RPOBLC>2.0.CO;2
    Burnet F, Brenguier J L. 2007. Observational study of the entrainment–mixing process in warm convective clouds [J]. J. Atmos. Sci., 64(6): 1995−2011. doi: 10.1175/JAS3928.1
    Chen J Y, Liu Y G, Zhang M H, et al. 2016. New understanding and quantification of the regime dependence of aerosol−cloud interaction for studying aerosol indirect effects [J]. Geophys. Res. Lett., 43(4): 1780−1787. doi: 10.1002/2016GL067683
    Chen J Y, Liu Y G, Zhang M H, et al. 2018. Height dependency of aerosol–cloud interaction regimes [J]. J. Geophys. Res., 123(1): 491−506. doi: 10.1002/2017JD027431
    段皎, 刘煜. 2011. 中国地区云光学厚度和云滴有效半径变化趋势 [J]. 气象科技, 39(4): 408−416. doi: 10.3969/j.issn.1671-6345.2011.04.004

    Duan Jiao, Liu Yu. 2011. Trends of cloud optical thickness and cloud effective radius variation in China [J]. Meteorological Science and Technology (in Chinese), 39(4): 408−416. doi: 10.3969/j.issn.1671-6345.2011.04.004
    Dusek U, Frank G P, Curtius J, et al. 2010. Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events [J]. Geophys. Res. Lett., 37(3): L03804. doi: 10.1029/2009GL040930
    房文. 2008. 气溶胶对云和降水影响的研究 [D]. 南京信息工程大学博士学位论文, 196pp. Fang Wen. 2008. Effect of aerosol on cloud and precipitation [D]. Ph. D. dissertation (in Chinese), Nanjing University of Information Science and Technology, 196pp.
    葛觐铭, 胡晓宇, 王晨, 等. 2020. 微波雷达双边滤波云检测新方法的研究 [J]. 地球科学进展, 35(12): 1256−1269. doi: 10.11867/j.issn.1001-8166.2020.100

    GE Jinming, Hu Xiaoyu, Wang Chen, et al. 2020. A novel bilateral filter hydrometeor detection method for microwave radar [J]. Advances in Earth Science (in Chinese), 35(12): 1256−1269. doi: 10.11867/j.issn.1001-8166.2020.100
    光莹, 邓军英, 陈勇航, 等. 2017. 层状云微物理属性垂直分布的季节变化——以新疆地区为例 [J]. 干旱区地理, 40(4): 754−761. doi: 10.13826/j.cnki.cn65-1103/x.2017.04.006

    Guang Ying, Deng Junying, Chen Yonghang, et al. 2017. Vertical distribution and its seasonal variation of microphysical properties of stratiform clouds in Xinjiang [J]. Arid Land Geography (in Chinese), 40(4): 754−761. doi: 10.13826/j.cnki.cn65-1103/x.2017.04.006
    Gultepe I, Isaac G A, Leaitch W R, et al. 1996. Parameterizations of marine stratus microphysics based on in situ observations: Implications for GCMs [J]. J. Climate, 9(2): 345−357. doi: 10.1175/1520-0442(1996)009<0345:POMSMB>2.0.CO;2
    Hallquist M, Wenger J C, Baltensperger U, et al. 2009. The formation, properties and impact of secondary organic aerosol: Current and emerging issues [J]. Atmospheric Chemistry and Physics, 9(14): 5155−5236. doi: 10.5194/acp-9-5155-2009
    Heymsfield A J, Sabin R M. 1989. Cirrus crystal nucleation by homogeneous freezing of solution droplets [J]. J. Atmos. Sci., 46(14): 2252−2264. doi: 10.1175/1520-0469(1989)046<2252:CCNBHF>2.0.CO;2
    Howell W E. 1949. The growth of cloud drops in uniformly cooled air [J]. J. Atmos. Sci., 6(2): 134−149. doi: 10.1175/1520-0469(1949)006<0134:TGOCDI>2.0.CO;2
    Kawamoto K, Nakajima T, Nakajima T Y. 2001. A global determination of cloud microphysics with AVHRR remote sensing [J]. J. Climate, 14(9): 2054−2068. doi: 10.1175/1520-0442(2001)014<2054:AGDOCM>2.0.CO;2
    Lamb D, Verlinde J. 2011. Physics and Chemistry of Clouds [M]. Cambridge: Cambridge University Press, 568.
    Leaitch W R, Strapp J W, Isaac G A, et al. 1986. Cloud droplet nucleation and cloud scavenging of aerosol sulphate in polluted atmospheres [J]. Tellus B: Chemical and Physical Meteorology, 38(5): 328−344. doi: 10.3402/tellusb.v38i5.15141
    Liu Y, Daum P H, Yum S S. 2006. Analytical expression for the relative dispersion of the cloud droplet size distribution [J]. Geophys. Res. Lett., 33(2): L02810. doi: 10.1029/2005GL024052
    刘玉琴. 2017. 中国东部气溶胶对暖云宏微观特性的影响[D]. 中国科学院大学(中国科学院遥感与数字地球研究所)博士学位论文, 120pp.

    Liu Yuqin. 2017. Study of aerosol effects on warm cloud macrophysical and microphysical characteristics over eastern China [D]. Ph. D. dissertation, University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences), 120pp.
    Lu C S, Liu Y G, Niu S J, et al. 2012. Observed impacts of vertical velocity on cloud microphysics and implications for aerosol indirect effects [J]. Geophys. Res. Lett., 39(21): L21808. doi: 10.1029/2012GL053599
    Peng Y R, Lohmann U, Leaitch R, et al. 2007. An investigation into the aerosol dispersion effect through the activation process in marine stratus clouds [J]. J. Geophys. Res., 112(D11): D11117. doi: 10.1029/2006JD007401
    Petters M D, Kreidenweis S M. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity [J]. Atmospheric Chemistry and Physics, 7(8): 1961−1971. doi: 10.5194/acp-7-1961-2007
    Pöschl U, Martin S T, Sinha B, et al. 2010. Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon [J]. Science, 329(5998): 1513−1516. doi: 10.1126/science.1191056
    Pruppacher H R. 1981. The microstructure of atmospheric clouds and precipitation [M]//Hobbs P V, Deepak A. Clouds: Their Formation, Optical Properties, and Effects. New York: Academic Press, 93−183.
    秦彦硕, 银燕, 杨素英, 等. 2012. 黄山地区春夏季气溶胶离子组分及其对云微物理特征的影响 [J]. 气象学报, 70(6): 1334−1346. doi: 10.11676/qxxb2012.112

    Qin Yanshuo, Yin Yan, Yang Suying, et al. 2012. Chemical characteristics of the aerosols and their effect on microphysical properties of clouds in spring and summer over Mt. Huang [J]. Acta Meteorologica Sinica (in Chinese), 70(6): 1334−1346. doi: 10.11676/qxxb2012.112
    Ramanathan V, Crutzen P J, Kiehl J T, et al. 2001. Aerosols, climate, and the hydrological cycle [J]. Science, 294(5549): 2119−2124. doi: 10.1126/science.1064034
    Reutter P, Su H, Trentmann J, et al. 2009. Aerosol- and updraft-limited regimes of cloud droplet formation: Influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN) [J]. Atmospheric Chemistry and Physics, 9(18): 7067−7080. doi: 10.5194/acp-9-7067-2009
    Rosenfeld D. 1999. TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall [J]. Geophys. Res. Lett., 26(20): 3105−3108. doi: 10.1029/1999GL006066
    Rosenfeld D, Dai J, Yu X, et al. 2007. Inverse relations between amounts of air pollution and orographic precipitation [J]. Science, 315(5817): 1396−1398. doi: 10.1126/science.1137949
    Rosenfeld D, Lohmann U, Raga G B, et al. 2008. Flood or drought: How do aerosols affect precipitation? [J]. Science, 321(5894): 1309−1313. doi: 10.1126/science.1160606
    Stephens G L. 1978. Radiation profiles in extended water clouds. II: Parameterization schemes [J]. J. Atmos. Sci., 35(11): 2123−2132. doi: 10.1175/1520-0469(1978)035<2123:RPIEWC>2.0.CO;2
    Stephens G L. 1984. The parameterization of radiation for numerical weather prediction and climate models [J]. Mon. Wea. Rev., 112(4): 826−867. doi: 10.1175/1520-0493(1984)112<0826:TPORFN>2.0.CO;2
    Tselioudis G, Rossow W B, Rind D. 1992. Global patterns of cloud optical thickness variation with temperature [J]. J. Climate, 5(12): 1484−1495. doi: 10.1175/1520-0442(1992)005<1484:GPOCOT>2.0.CO;2
    Turpin B J, Huntzicker J J. 1991. Secondary formation of organic aerosol in the Los Angeles Basin: A descriptive analysis of organic and elemental carbon concentrations [J]. Atmos. Environ. Part A. Gen Top, 25(2): 207−215. doi: 10.1016/0960-1686(91)90291-E
    Twomey S. 1977. The influence of pollution on the shortwave albedo of clouds [J]. J. Atmos. Sci., 34(7): 1149−1152. doi: 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
    Twomey S. 2007. Pollution and the planetary albedo [J]. Atmos. Environ., 41(S): 120−125. doi: 10.1016/j.atmosenv.2007.10.062
    汪方, 丁一汇. 2005. 气候模式中云辐射反馈过程机理的评述 [J]. 地球科学进展, 20(2): 207−215. doi: 10.3321/j.issn:1001-8166.2005.02.011

    Wang Fang, Ding Yihui. 2005. An evaluation of cloud radiative feedback mechanisms in climate models [J]. Advances in Earth Science (in Chinese), 20(2): 207−215. doi: 10.3321/j.issn:1001-8166.2005.02.011
    汪宏七, 赵高祥. 1994. 云和辐射—(I)云气侯学和云的辐射作用 [J]. 大气科学, 18(S1): 910−932. doi: 10.3878/j.issn.1006-9895.1994.z1.15

    Wang Hongqi, Zhao Gaoxiang. 1994. Cloud and radiation—I: Cloud climatology and radiative effects of clouds [J]. Scientia Atmospherica Sinica (in Chinese), 18(S1): 910−932. doi: 10.3878/j.issn.1006-9895.1994.z1.15
    Weis D D, Ewing G E. 1999. The reaction of nitrogen dioxide with sea salt aerosol [J]. J. Phys. Chem. A, 103(25): 4865−4873. doi: 10.1021/jp984488q
    Whitby K T. 1978. The physical characteristics of sulfur aerosols [J]. Atmos. Environ., 12(1–3): 135–159. doi: 10.1016/0004-6981(78)90196-8
    吴伟, 王式功. 2011. 中国北方云量变化趋势及其与区域气候的关系 [J]. 高原气象, 30(3): 651−658.

    Wu Wei, Wang Shigong. 2011. Tendency change of cloud cover over Northern China and its relation with regional climate [J]. Plateau Meteorology (in Chinese), 30(3): 651−658.
    谢磊. 2014. 基于云雷达和MODIS探测的洋面降水暖云与非降水暖云的云参数特征及垂直结构的研究 [D]. 中国科学技术大学硕士学位论文, 69pp.

    Xie Lei. 2014. The cloud property and vertical structure characteristics of oceanic precipitating and non-precipitating warm clouds derived from CloudSat/CPR and Aqua/MODIS measurements [D]. M. S. thesis (in Chinese), University of Science and Technology of China, 69pp.
    杨慧玲, 肖辉, 洪延超. 2011. 气溶胶对云宏微观特性和降水影响的研究进展 [J]. 气候与环境研究, 16(4): 525−542. doi: 10.3878/j.issn.1006-9585.2011.04.13

    Yang Huiling, Xiao Hui, Hong Yanchao. 2011. Progress in impacts of aerosol on cloud properties and precipitation [J]. Climatic and Environmental Research (in Chinese), 16(4): 525−542. doi: 10.3878/j.issn.1006-9585.2011.04.13
    杨素英, 马建中, 胡志晋, 等. 2010. 华北地区多化学组分气溶胶对暖云微物理特征的影响 [J]. 中国科学: 地球科学, 40(11): 1468–1478. Yang Suying, Ma Jianzhong, Hu Zhijin, et al. 2011. Influence of multi–chemical–component aerosols on the microphysics of warm clouds in North China [J]. Science China Earth Sciences (in Chinese), 54(3): 451–461. doi: 10.1007/s11430-010-4075-z
    尹金方. 2013. 东亚区域云和降水微物理特征及云微物理参数化方案构建 [D]. 浙江大学博士学位论文, 176pp. Yin Jinfang. 2013. The study on observation and prameterization of cloud–precipitation microphysical properties over East Asia [D]. Ph. D. dissertation (in Chinese), Zhejiang University, 176pp.
    张屹, 陆春松, 张胜龙, 等. 2021. 层积云与积云中的微物理特征及其影响因子 [J]. 暴雨灾害, 40(3): 297−305. doi: 10.3969/j.issn.1004-9045.2021.03.008

    Zhang Yi, Lu Chunsong, Zhang Shenglong, et al. 2021. Stratocumulus and cumulus microphysics and the influencing factors [J]. Torrential Rain and Disasters (in Chinese), 40(3): 297−305. doi: 10.3969/j.issn.1004-9045.2021.03.008
    张喆, 丁建丽, 王瑾杰. 2017. 中亚地区气溶胶时空分布及其对云和降水的影响 [J]. 环境科学学报, 37(1): 61−72. doi: 10.13671/j.hjkxxb.2016.0187

    Zhang Zhe, Ding Jianli, Wang Jinjie. 2017. Temporal distribution of cloud and precipitation and their possible relationships with surface aerosols in Central Asia [J]. Acta Scientiae Circumstantiae (in Chinese), 37(1): 61−72. doi: 10.13671/j.hjkxxb.2016.0187
    张正国, 卢广献, 汤达章, 等. 2018. 广西秋季层状云微物理特征分析 [J]. 气象科技, 46(3): 545−555. doi: 10.19517/j.1671-6345.20170223

    Zhang Zhengguo, Lu Guangxian, Tang Dazhang, et al. 2018. Microphysical characteristics of stratiform clouds in autumn in Guangxi [J]. Meteorological Science and Technology (in Chinese), 46(3): 545−555. doi: 10.19517/j.1671-6345.20170223
    赵春生, 彭大勇, 段英. 2005. 海盐气溶胶和硫酸盐气溶胶在云微物理过程中的作用 [J]. 应用气象学报, (4): 417−425.

    Zhao Chunsheng, Peng Dayong, Duan Ying. 2005. The impacts of sea-salt and nss-sulfate aerosols on cloud microproperties [J]. Journal of Applied Meteorological Science (in Chinese), (4): 417−425.
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (83) PDF downloads(10) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint