Advanced Search
Volume 28 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
BAI Jiahui, LIU Hailong, LI Yiwen, et al. 2023. An Assessment of Southern Ocean Circulation Simulation by LASG/IAP Climate system Ocean Model [J]. Climatic and Environmental Research (in Chinese), 28 (1): 74−88 doi: 10.3878/j.issn.1006-9585.2022.22017
Citation: BAI Jiahui, LIU Hailong, LI Yiwen, et al. 2023. An Assessment of Southern Ocean Circulation Simulation by LASG/IAP Climate system Ocean Model [J]. Climatic and Environmental Research (in Chinese), 28 (1): 74−88 doi: 10.3878/j.issn.1006-9585.2022.22017

An Assessment of Southern Ocean Circulation Simulation by LASG/IAP Climate system Ocean Model

doi: 10.3878/j.issn.1006-9585.2022.22017
Funds:  National Key Research and Development Program of China (Grants 2020YFA0608902 and 2018YFA0605703), National Natural Science Foundation of China (Grants 41931183 and 41976026)
  • Received Date: 2022-01-28
    Available Online: 2022-12-21
  • Publish Date: 2023-01-25
  • An analysis of the Antarctic Circumpolar Circulation (ACC) and the southern ocean Meridional Overturning Circulation (MOC) simulated by the LICOM3.0 using the model outputs obtained from the Ocean Model Intercomparison Project (OMIP) is presented in this article. The mean, variability, and trends of the ACC and MOC over the 1958–2009 period are focused and their relationships with the surface forcing are studied. The model results are compared with available observations, simulation results from other models having finer resolutions, and also with theoretical constraints to check the reliability of the simulations. Generally, the ACC and the Southern Ocean MOC simulated by LICOM3.0 have a similar and reasonable mean state in the two experiments, presenting similar trends from 1958–2009. However, Southern Ocean transport has a larger trend in the OMIP1 experiment, which is related to surface forces. Their correlation needs to be studied further.
  • loading
  • [1]
    Beadling R L, Russell J L, Stouffer R J, et al. 2020. Representation of southern ocean properties across coupled model intercomparison project generations: CMIP3 to CMIP6 [J]. J. Climate, 33(15): 6555−6581. doi: 10.1175/JCLI-D-19-0970.1
    [2]
    Canuto V M, Howard A, Cheng Y, et al. 2001. Ocean turbulence. Part I: One-point closure model-momentum and heat vertical diffusivities [J]. J. Phys. Oceanogr., 31(6): 1413−1426. doi: 10.1175/1520-0485(2001)031<1413:OTPIOP>2.0.CO;2
    [3]
    Chidichimo M P, Donohue K A, Watts D R, et al. 2014. Baroclinic transport time series of the Antarctic Circumpolar Current measured in Drake Passage [J]. J. Phys. Oceanogr., 44(7): 1829−1853. doi: 10.1175/JPO-D-13-071.1
    [4]
    Craig A P, Vertenstein M, Jacob R. 2012. A new flexible coupler for earth system modeling developed for CCSM4 and CESM1 [J]. The International Journal of High Performance Computing Applications, 26(1): 31−42. doi: 10.1177/1094342011428141
    [5]
    Cunningham S A, Alderson S G, King B A, et al. 2003. Transport and variability of the Antarctic circumpolar current in Drake Passage [J]. J. Geophys. Res.: Oceans, 108(C5): 8084. doi: 10.1029/2001JC001147
    [6]
    Döös K, Webb D J. 1994. The Deacon cell and the other meridional cells of the Southern Ocean [J]. J. Phys. Oceanogr., 24(2): 429–442. doi: 10.1175/1520-0485(1994)024<0429:TDCATO>2.0.CO;2
    [7]
    Downes S M, Farneti R, Uotila P, et al. 2015. An assessment of Southern Ocean water masses and sea ice during 1988–2007 in a suite of interannual CORE-II simulations [J]. Ocean Modelling, 94: 67−94. doi: 10.1016/j.ocemod.2015.07.022
    [8]
    Dufour C O, Le Sommer J, Zika J D, et al. 2012. Standing and transient eddies in the response of the Southern Ocean meridional overturning to the southern annular mode [J]. J. Climate, 25(20): 6958−6974. doi: 10.1175/JCLI-D-11-00309.1
    [9]
    Farneti R, Downes S M, Griffies S M, et al. 2015. An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations [J]. Ocean Modelling, 93: 84−120. doi: 10.1016/j.ocemod.2015.07.009
    [10]
    Ferreira D, Marshall J, Heimbach P. 2005. Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint [J]. J. Phys. Oceanogr., 35(10): 1891−1910. doi: 10.1175/JPO2785.1
    [11]
    Gent P R, Mcwilliams J C. 1990. Isopycnal mixing in ocean general circulation models [J]. J. Phys. Oceanogr., 20(1): 150−155. doi: 10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2
    [12]
    Gill A E. 1982. Atmosphere−Ocean Dynamics [M]. New York: Academic Press, 662pp.
    [13]
    Hallberg R, Gnanadesikan A. 2006. The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project [J]. J. Phys. Oceanogr., 36(12): 2232−2252. doi: 10.1175/JPO2980.1
    [14]
    Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437−472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
    [15]
    Kistler R, Kalnay E, Collins W, et al. 2001. The NCEP–NCAR 50-year reanalysis: Monthly means CD-ROM and documentation [J]. Bull. Amer. Meteor. Soc., 82(2): 247−268. doi: 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
    [16]
    Kobayashi S, Ota Y, Harada Y, et al. 2015. The JRA-55 reanalysis: General specifications and basic characteristics [J]. J. Meteor. Soc. Japan, 93(1): 5−48. doi: 10.2151/jmsj.2015-001
    [17]
    Koshlyakov M N, Lisina I I, Morozov E G, et al. 2007. Absolute geostrophic currents in the Drake Passage based on observations in 2003 and 2005 [J]. Oceanology, 47(4): 451−463. doi: 10.1134/S0001437007040029
    [18]
    Large W G, Yeager S G. 2009. The global climatology of an interannually varying air–sea flux data set [J]. Climate Dyn., 33(2–3): 341–364. doi: 10.1007/s00382-008-0441-3
    [19]
    Lin Pengfei, Liu Hailong, Xue Wei, et al. 2016. A coupled experiment with LICOM2 as the ocean component of CESM1 [J]. J. Meteor. Res., 30(1): 76−92. doi: 10.1007/s13351-015-5045-3
    [20]
    Lin Pengfei, Yu Zipeng, Liu Hailong, et al. 2020. LICOM model datasets for the CMIP6 ocean model intercomparison project [J]. Advances in Atmospheric Sciences, 37(3): 239−249. doi: 10.1007/s00376-019-9208-5
    [21]
    Liu Hailong, Zhang Xuehong, Li Wei, et al. 2004. An eddy-permitting oceanic general circulation model and its preliminary evaluation [J]. Advances in Atmospheric Sciences, 21(5): 675−690. doi: 10.1007/BF02916365
    [22]
    Liu Hailong, Lin Pengfei, Yu Yongqiang, et al. 2012. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2 [J]. Acta Meteorologica Sinica, 26(3): 318−329. doi: 10.1007/s13351-012-0305-y
    [23]
    Liu Hailong, Lin Pengfei, Zheng Weipeng, et al. 2021. A global eddy-resolving ocean forecast system in China–LICOM Forecast System (LFS) [J]. Journal of Operational Oceanography, doi: 10.1080/1755876X.2021.1902680
    [24]
    Madec G, Imbard M. 1996. A global ocean mesh to overcome the North Pole singularity [J]. Climate Dyn., 12(6): 381−388. doi: 10.1007/BF00211684
    [25]
    Marshall G J. 2003. Trends in the Southern Annular Mode from observations and reanalyses [J]. J. Climate, 16(24): 4134−4143. doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2
    [26]
    Marshall J, Speer K. 2012. Closure of the meridional overturning circulation through Southern Ocean upwelling [J]. Nature Geoscience, 5(3): 171−180. doi: 10.1038/ngeo1391
    [27]
    McIntosh P C, McDougall T J. 1996. Isopycnal averaging and the residual mean circulation [J]. J. Phys. Oceanogr., 26(8): 1655−1660. doi: 10.1175/1520-0485(1996)026<1655:IAATRM>2.0.CO;2
    [28]
    Meijers A J S, Shuckburgh E, Bruneau N, et al. 2012. Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios [J]. J. Geophys. Res.: Oceans, 117(C12): C12008. doi: 10.1029/2012JC008412
    [29]
    Meredith M P, Hogg A M. 2006. Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode [J]. Geophys. Res. Lett., 33(16): L16608. doi: 10.1029/2006GL026499
    [30]
    Morrison A K, Hogg A M. 2013. On the relationship between Southern Ocean overturning and ACC transport [J]. J. Phys. Oceanogr., 43(1): 140−148. doi: 10.1175/JPO-D-12-057.1
    [31]
    Morrison A K, Hogg A M, Ward M L. 2011. Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing [J]. Geophys. Res. Lett., 38(14): L14602. doi: 10.1029/2011GL048031
    [32]
    Munday D R, Johnson H L, Marshall D P. 2013. Eddy saturation of equilibrated circumpolar currents [J]. J. Phys. Oceanogr., 43(3): 507−532. doi: 10.1175/JPO-D-12-095.1
    [33]
    Murray R J. 1996. Explicit generation of orthogonal grids for ocean models [J]. J. Comput. Phys., 126(2): 251−273. doi: 10.1006/jcph.1996.0136
    [34]
    Redi M H. 1982. Oceanic isopycnal mixing by coordinate rotation [J]. J. Phys. Oceanogr., 12(10): 1154−1158. doi: 10.1175/15200485(1982)012<1154:OIMBCR>2.0.CO;2
    [35]
    Renault A, Provost C, Sennéchael N, et al. 2011. Two full-depth velocity sections in the Drake Passage in 2006—Transport estimates [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 58(25–26): 2572−2591. doi: 10.1016/j.dsr2.2011.01.004
    [36]
    Rintoul S R, Naveira-Garabato A C. 2013. Dynamics of the Southern Ocean circulation [M]//International Geophysics. Oxford: Academic Press, 103: 471–492. doi: 10.1016/B978-0-12-391851-2.00018-0
    [37]
    Sen Gupta A, Santoso A, Taschetto A S, et al. 2009. Projected changes to the Southern Hemisphere ocean and sea ice in the IPCC AR4 climate models [J]. J. Climate, 22(11): 3047−3078. doi: 10.1175/2008JCLI2827.1
    [38]
    Sloyan B M, Rintoul S R. 2001. The Southern Ocean limb of the global deep overturning circulation [J]. J. Phys. Oceanogr., 31(1): 143−173. doi: 10.1175/1520-0485(2001)031<0143:TSOLOT>2.0.CO;2
    [39]
    Speer K, Rintoul S R, Sloyan B. 2000. The diabatic Deacon cell [J]. J. Phys. Oceanogr., 30(12): 3212−3222. doi: 10.1175/1520-0485(2000)030<3212:TDDC>2.0.CO;2
    [40]
    St. Laurent L C, Simmons H L, Jayne S R. 2002. Estimating tidally driven mixing in the deep ocean [J]. Geophys. Res. Lett., 29(23): 2106. doi: 10.1029/2002GL015633
    [41]
    Straub D N. 1993. On the transport and angular momentum balance of channel models of the Antarctic Circumpolar Current [J]. J. Phys. Oceanogr., 23(4): 776−782. doi: 10.1175/1520-0485(1993)023<0776:OTTAAM>2.0.CO;2
    [42]
    Tsujino H, Urakawa S, Nakano H, et al. 2018. JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do) [J]. Ocean Modelling, 130: 79−139. doi: 10.1016/j.ocemod.2018.07.002
    [43]
    Yu Rucong. 1994. A two-step shape-preserving advection scheme [J]. Advances in Atmospheric Sciences, 11(4): 479−490. doi: 10.1007/BF02658169
    [44]
    Zhang Xuehong, Liang Xinzhong. 1989. A numerical world ocean general circulation model [J]. Advances in Atmospheric Sciences, 6(1): 44−61. doi: 10.1007/BF02656917
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (124) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return