Citation: | GVZELNUR·Yasin , ZHANG Jingpeng, ZHAO Tianbao. 2023. CMIP6 Model-Projected Future Changes in Extreme Precipitation over Central Asia in the 21st Century [J]. Climatic and Environmental Research (in Chinese), 28 (3): 286−302 doi: 10.3878/j.issn.1006-9585.2022.22021 |
[1] |
Aizen E M, Aizen V B, Melack J M, et al. 2001. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia [J]. Int. J. Climatol., 21(5): 535−556. doi: 10.1002/joc.626
|
[2] |
Alexander L V, Zhang X, Peterson T C, et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation [J]. J. Geophys. Res. Atmos., 111(D5): D05109. doi: 10.1029/2005JD006290
|
[3] |
Allan R P, Soden B J. 2008. Atmospheric warming and the amplification of precipitation extremes [J]. Science, 321(5895): 1481−1484. doi: 10.1126/science.1160787
|
[4] |
Allen M R, Ingram W J. 2002. Constraints on future changes in climate and the hydrologic cycle [J]. Nature, 419(6903): 224−232. doi: 10.1038/nature01092
|
[5] |
Alpert P. 2002. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values [J]. Geophys. Res. Lett., 29(11): 1536. doi: 10.1029/2001GL013554
|
[6] |
Chen F H, Huang W, Jin L Y, et al. 2011. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming [J]. Sci. China Earth Sci., 54(12): 1812−1821. doi: 10.1007/s11430-011-4333-8
|
[7] |
Chen F H, Wang J S, Jin L Y, et al. 2009. Rapid warming in mid-latitude central Asia for the past 100 years [J]. Front. Earth Sci. China, 3(1): 42−50. doi: 10.1007/s11707-009-0013-9
|
[8] |
Chen F H, Yu Z C, Yang M L, et al. 2008a. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history [J]. Quaternary Science Reviews, 27(3–4): 351–364. doi: 10.1016/j.quascirev.2007.10.017
|
[9] |
Chen M Y, Shi W, Xie P P, et al. 2008b. Assessing objective techniques for gauge-based analyses of global daily precipitation [J]. J. Geophys. Res. Atmos., 113(D4): D04110. doi: 10.1029/2007JD009132
|
[10] |
Chen X, Wang S S, Hu Z Y, et al. 2018. Spatiotemporal characteristics of seasonal precipitation and their relationships with ENSO in Central Asia during 1901–2013 [J]. J. Geogr. Sci., 28(9): 1341−1368. doi: 10.1007/s11442-018-1529-2
|
[11] |
Chen H P, Sun J Q, Lin W Q, et al. 2020. Comparison of CMIP6 and CMIP5 models in simulating climate extremes [J]. Sci. Bull., 65: 1415−1418. doi: 10.1016/j.scib.2020.05.015
|
[12] |
Dai A. 2013. Increasing drought under global warming in observations and models [J]. Nat. Climate Change, 3: 52−58. doi: 10.1038/NCLIMATE1633
|
[13] |
Dai A G, Trenberth K E, Karl T R. 1998. Global variations in droughts and wet spells: 1900–1995 [J]. Geophys. Res. Lett., 25(17): 3367−3370. doi: 10.1029/98GL52511
|
[14] |
Donat M G, Lowry A L, Alexander L V, et al. 2016. More extreme precipitation in the world’s dry and wet regions [J]. Nat. Climate Change, 6(5): 508−513. doi: 10.1038/nclimate2941
|
[15] |
Easterling D R, Meehl G A, Parmesan C, et al. 2000. Climate extremes: Observations, modeling, and impacts [J]. Science, 289(5487): 2068−2074. doi: 10.1126/science.289.5487.2068
|
[16] |
Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the coupled model Intercomparison project phase 6 (CMIP6) experimental design and organization [J]. Geosci. Model Dev., 9(5): 1937−1958. doi: 10.5194/gmd-9-1937-2016
|
[17] |
Frich P, Alexander L V, Della-Marta P, et al. 2002. Observed coherent changes in climatic extremes during the second half of the twentieth century [J]. Climate Res., 19(3): 193−212. doi: 10.3354/cr019193
|
[18] |
Gidden M J, Riahi K, Smith S J, et al. 2019. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century [J]. Geosci. Model Dev., 12(4): 1443−1475. doi: 10.5194/gmd-12-1443-2019
|
[19] |
Huang A N, Zhou Y, Zhang Y C, et al. 2014. Changes of the annual precipitation over central Asia in the twenty-first century projected by multimodels of CMIP5 [J]. J. Climate, 27(17): 6627−6646. doi: 10.1175/JCLI-D-14-00070.1
|
[20] |
Huang J P, Yu H P, Dai A G, et al. 2017. Drylands face potential threat under 2 °C global warming target [J]. Nat. Climate Change, 7(6): 417−422. doi: 10.1038/nclimate3275
|
[21] |
IPCC. 2021. Summary for policymakers [M]. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte V, Zhai P, Pirani A, et al, Eds. Cambridge: Cambridge University Press, 20.
|
[22] |
Jiang J, Zhou T J, Chen X L, et al. 2020. Future changes in precipitation over Central Asia based on CMIP6 projections [J]. Environ. Res. Lett., 15(5): 054009. doi: 10.1088/1748-9326/ab7d03
|
[23] |
Karl T, Trenberth K. 2003. Modern Global Climate Change [J]. Science, 302(5651): 1719−1723. doi: 10.1126/science.109022
|
[24] |
Klein Tank A M G, Peterson T C, Quadir D A, et al. 2006. Changes in daily temperature and precipitation extremes in central and South Asia [J]. J. Geophys. Res. Atmos., 111(D16): D16105. doi: 10.1029/2005JD006316
|
[25] |
Kopparla P, Fischer E M, Hannay C, et al. 2013. Improved simulation of extreme precipitation in a high-resolution atmosphere model [J]. Geophys. Res. Lett., 40(21): 5803−5808. doi: 10.1002/2013GL057866
|
[26] |
Li Z, Chen Y N, Fang G H, et al. 2017. Multivariate assessment and attribution of droughts in Central Asia [J]. Sci. Rep., 7(1): 1316. doi: 10.1038/s41598-017-01473-1
|
[27] |
Lioubimtseva E, Cole R. 2006. Uncertainties of climate change in arid environments of Central Asia [J]. Rev. Fish. Sci., 14(1–2): 29–49. doi: 10.1080/10641260500340603
|
[28] |
Lioubimtseva E, Henebry G M. 2009. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations [J]. J. Arid Environ., 73(11): 963−977. doi: 10.1016/j.jaridenv.2009.04.022
|
[29] |
Meehl G A, Karl T, Easterling D R, et al. 2000. An introduction to trends in extreme weather and climate events: Observations, socioeconomic impacts, terrestrial ecological impacts, and model projections [J]. Bull. Amer. Meteor. Soc., 81(3): 413−416. doi: 10.1175/1520-0477(2000)081<0413:AITTIE>2.3.CO;2
|
[30] |
Min S K, Zhang X B, Zwiers F W, et al. 2011. Human contribution to more-intense precipitation extremes [J]. Nature, 470(7334): 378−381. doi: 10.1038/nature09763
|
[31] |
Pendergrass A G, Hartmann D L. 2014. Changes in the distribution of rain frequency and intensity in response to global warming [J]. J. Climate, 27(22): 8372−8383. doi: 10.1175/JCLI-D-14-00183.1
|
[32] |
Raftery A E, Gneiting T, Balabdaoui F, et al. 2005. Using Bayesian model averaging to calibrate forecast ensembles [J]. Mon. Wea. Rev., 133(5): 1155−1174. doi: 10.1175/MWR2906.1
|
[33] |
Seneviratne S J, Donat M G, Mueller B, et al. 2014. No pause in the increase of hot temperature extremes [J]. Nat. Climate Change, 4(3): 161−163. doi: 10.1038/nclimate2145
|
[34] |
郯俊岭, 江志红, 马婷婷. 2016. 基于贝叶斯模型的中国未来气温变化预估及不确定性分析 [J]. 气象学报, 74(4): 583−597. doi: 10.11676/qxxb2016.044
Tan Junling, Jiang Zhihong, Ma Tingting. 2016. Projections of future surface air temperature change and uncertainty over China based on the Bayesian Model Averaging [J]. Acta Meteor. Sinica (in Chinese), 74(4): 583−597. doi: 10.11676/qxxb2016.044
|
[35] |
Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram [J]. J. Geophys. Res. Atmos., 106(D7): 7183−7192. doi: 10.1029/2000JD900719
|
[36] |
Tian D, Guo Y, Dong W J. 2015. Future changes and uncertainties in temperature and precipitation over China based on CMIP5 models [J]. Adv. Atmos. Sci., 32(4): 487−496. doi: 10.1007/s00376-014-4102-7
|
[37] |
Trenberth K E, Dai A, Rasmussen R M, et al. 2003. The changing character of precipitation [J]. Bull. Amer. Meteor. Soc., 84(9): 1205−1218. doi: 10.1175/BAMS-84-9-1205
|
[38] |
Ukkola A M, De Kauwe M G, Roderick M L, et al. 2020. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation [J]. Geophys. Res. Lett., 47(11): e2020GL087820. doi: 10.1029/2020GL087820
|
[39] |
王芳, 张晋韬. 2020. 《巴黎协定》排放情景下中亚地区降水变化响应 [J]. 地理学报, 75(01): 25−40. Wang F, Zhang J. 2020. Response of precipitation change in Central Asia to emission scenarios consistent with the Paris Agreement [J]. Acta Geographica Sinica (in Chinese), 75(01): 25−40. doi: 10.11821/dlxb202001003
|
[40] |
Wang L, Bao Q, He B, et al. 2019. Short commentary on CMIP6 high resolution model Intercomparison project (HighResMIP) [J]. Climate Change Res. (in Chinese), 15(5): 498−502. doi: 10.12006/j.issn.1673-1719.2019.077
|
[41] |
Xie P P, Chen M Y, Yang S, et al. 2007. A gauge-based analysis of daily precipitation over East Asia [J]. J. Hydrometeorol., 8(3): 607−626. doi: 10.1175/JHM583.1
|
[42] |
Zhai P M, Zhang X B, Wan H, et al. 2005. Trends in total precipitation and frequency of daily precipitation extremes over China [J]. J. Climate, 18(7): 1096−1108. doi: 10.1175/JCLI-3318.1
|
[43] |
Zhang M, Chen Y N, Shen Y J, et al. 2017. Changes of precipitation extremes in arid Central Asia [J]. Quaternary International, 436: 16−27. doi: 10.1016/j.quaint.2016.12.024
|
[44] |
Zhang J P, Zhao T B, Zhou L B, et al. 2021. Historical changes and future projections of extreme temperature and precipitation along the Sichuan−Tibet Railway [J]. J. Meteor. Res., 35(3): 402−415. doi: 10.1007/s13351-021-0175-2
|
[45] |
张影, 徐建华, 陈忠升, 等. 2016. 中亚地区气温变化的时空特征分析 [J]. 干旱区资源与环境, 30(7): 133−137. doi: 10.13448/j.cnki.jalre.2016.228
Zhang Y, Xu J H, Chen Z S, et al. 2016. Spatial and temporal variation of temperature in Central Asia [J]. J. Arid Land Resour. Environ. (in Chinese), 30(7): 133−137. doi: 10.13448/j.cnki.jalre.2016.228
|
[46] |
Zhao T B, Chen L, Ma Z G. 2014. Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models [J]. Chinese Sci. Bull., 59(4): 412−429. doi: 10.1007/s11434-013-0003-x
|
[47] |
Zhao T B, Dai A G. 2017. Uncertainties in historical changes and future projections of drought. Part II: Model-simulated historical and future drought changes [J]. Climatic Change, 144(3): 535−548. doi: 10.1007/s10584-016-1742-x
|
[48] |
周天军, 邹立维, 吴波, 等. 2014. 中国地球气候系统模式研究进展:CMIP计划实施近20年回顾 [J]. 气象学报, 72(5): 892−907. doi: 10.11676/qxxb2014.083
Zhou Tianjun, Zou Liwei, Wu Bo, et al. 2014. Development of earth/climate system models in China: A review from the coupled model intercomparison project perspective [J]. Acta Meteor. Sinica (in Chinese), 72(5): 892−907. doi: 10.11676/qxxb2014.083
|
[49] |
周天军, 邹立维, 陈晓龙. 2019. 第六次国际耦合模式比较计划(CMIP6)评述 [J]. 气候变化研究进展, 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193
Zhou T J, Zou L W, Chen X L. 2019. Commentary on the coupled model Intercomparison project phase 6 (CMIP6) [J]. Climate Change Res. (in Chinese), 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193
|
[50] |
Zhu X, Wei Z G, Dong W J, et al. 2020. Dynamical downscaling simulation and projection for mean and extreme temperature and precipitation over central Asia [J]. Climate Dyn., 54(7): 3279−3306. doi: 10.1007/s00382-020-05170-0
|