Advanced Search
Volume 28 Issue 3
May  2023
Turn off MathJax
Article Contents
GVZELNUR·Yasin , ZHANG Jingpeng, ZHAO Tianbao. 2023. CMIP6 Model-Projected Future Changes in Extreme Precipitation over Central Asia in the 21st Century [J]. Climatic and Environmental Research (in Chinese), 28 (3): 286−302 doi: 10.3878/j.issn.1006-9585.2022.22021
Citation: GVZELNUR·Yasin , ZHANG Jingpeng, ZHAO Tianbao. 2023. CMIP6 Model-Projected Future Changes in Extreme Precipitation over Central Asia in the 21st Century [J]. Climatic and Environmental Research (in Chinese), 28 (3): 286−302 doi: 10.3878/j.issn.1006-9585.2022.22021

CMIP6 Model-Projected Future Changes in Extreme Precipitation over Central Asia in the 21st Century

doi: 10.3878/j.issn.1006-9585.2022.22021
Funds:  National Key Research and Development Program of China (Grant 2020YFA0608904), National Natural Science Foundation of China (Grants 41975115 and 42205032), Natural Science Foundation of Shaanxi Province (Grant 2021JQ-166)
  • Received Date: 2022-02-14
  • Accepted Date: 2022-08-05
  • Available Online: 2022-08-18
  • Publish Date: 2023-05-25
  • Based on the numerical simulations provided by the latest 14 coupled models of the sixth phase of the coupled model intercomparison project (CMIP6), the spatial and temporal distribution characteristics of extreme precipitation over Central Asia (CA) and its relationship with regional climate warming in the middle and late 21st century under two shared socioeconomic paths (SSP2-4.5 and SSP5-8.5) are analyzed in this study. The results show that most CMIP6 models can essentially simulate the spatial distribution characteristics of observed precipitation climate states from 1979–2018. However, the model simulations underestimate the observations in the southwest and southeast of CA and overestimate the observations in northern and southern CA. Compared with the historical period (1981–2010), the precipitation intensity at the end of the 21st century (2071–2100) increased by 0.54 mm/10 a and 2.4 mm/10 a under the scenarios of SSP2-4.5 and SSP5-8.5, respectively, while the frequency of extreme precipitation events increased by 5%–7% and 6%–10%, respectively, particularly in the high-altitude mountains in central and southern regions. The signal-to-noise ratio of the predicted precipitation intensity and frequency in northeast CA to the north of the Tianshan Mountains is more reliable. Climate warming will have an obvious regulatory effect on the frequency of extreme precipitation events in CA. Under the scenarios of SSP2-4.5 and SSP5-8.5, a temperature increase of 1 K increased the frequency of extremely heavy precipitation events by approximately 7 and 9 days and the maximum continuous dry days by approximately 3 and 6 days, respectively.
  • loading
  • [1]
    Aizen E M, Aizen V B, Melack J M, et al. 2001. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia [J]. Int. J. Climatol., 21(5): 535−556. doi: 10.1002/joc.626
    [2]
    Alexander L V, Zhang X, Peterson T C, et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation [J]. J. Geophys. Res. Atmos., 111(D5): D05109. doi: 10.1029/2005JD006290
    [3]
    Allan R P, Soden B J. 2008. Atmospheric warming and the amplification of precipitation extremes [J]. Science, 321(5895): 1481−1484. doi: 10.1126/science.1160787
    [4]
    Allen M R, Ingram W J. 2002. Constraints on future changes in climate and the hydrologic cycle [J]. Nature, 419(6903): 224−232. doi: 10.1038/nature01092
    [5]
    Alpert P. 2002. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values [J]. Geophys. Res. Lett., 29(11): 1536. doi: 10.1029/2001GL013554
    [6]
    Chen F H, Huang W, Jin L Y, et al. 2011. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming [J]. Sci. China Earth Sci., 54(12): 1812−1821. doi: 10.1007/s11430-011-4333-8
    [7]
    Chen F H, Wang J S, Jin L Y, et al. 2009. Rapid warming in mid-latitude central Asia for the past 100 years [J]. Front. Earth Sci. China, 3(1): 42−50. doi: 10.1007/s11707-009-0013-9
    [8]
    Chen F H, Yu Z C, Yang M L, et al. 2008a. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history [J]. Quaternary Science Reviews, 27(3–4): 351–364. doi: 10.1016/j.quascirev.2007.10.017
    [9]
    Chen M Y, Shi W, Xie P P, et al. 2008b. Assessing objective techniques for gauge-based analyses of global daily precipitation [J]. J. Geophys. Res. Atmos., 113(D4): D04110. doi: 10.1029/2007JD009132
    [10]
    Chen X, Wang S S, Hu Z Y, et al. 2018. Spatiotemporal characteristics of seasonal precipitation and their relationships with ENSO in Central Asia during 1901–2013 [J]. J. Geogr. Sci., 28(9): 1341−1368. doi: 10.1007/s11442-018-1529-2
    [11]
    Chen H P, Sun J Q, Lin W Q, et al. 2020. Comparison of CMIP6 and CMIP5 models in simulating climate extremes [J]. Sci. Bull., 65: 1415−1418. doi: 10.1016/j.scib.2020.05.015
    [12]
    Dai A. 2013. Increasing drought under global warming in observations and models [J]. Nat. Climate Change, 3: 52−58. doi: 10.1038/NCLIMATE1633
    [13]
    Dai A G, Trenberth K E, Karl T R. 1998. Global variations in droughts and wet spells: 1900–1995 [J]. Geophys. Res. Lett., 25(17): 3367−3370. doi: 10.1029/98GL52511
    [14]
    Donat M G, Lowry A L, Alexander L V, et al. 2016. More extreme precipitation in the world’s dry and wet regions [J]. Nat. Climate Change, 6(5): 508−513. doi: 10.1038/nclimate2941
    [15]
    Easterling D R, Meehl G A, Parmesan C, et al. 2000. Climate extremes: Observations, modeling, and impacts [J]. Science, 289(5487): 2068−2074. doi: 10.1126/science.289.5487.2068
    [16]
    Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the coupled model Intercomparison project phase 6 (CMIP6) experimental design and organization [J]. Geosci. Model Dev., 9(5): 1937−1958. doi: 10.5194/gmd-9-1937-2016
    [17]
    Frich P, Alexander L V, Della-Marta P, et al. 2002. Observed coherent changes in climatic extremes during the second half of the twentieth century [J]. Climate Res., 19(3): 193−212. doi: 10.3354/cr019193
    [18]
    Gidden M J, Riahi K, Smith S J, et al. 2019. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century [J]. Geosci. Model Dev., 12(4): 1443−1475. doi: 10.5194/gmd-12-1443-2019
    [19]
    Huang A N, Zhou Y, Zhang Y C, et al. 2014. Changes of the annual precipitation over central Asia in the twenty-first century projected by multimodels of CMIP5 [J]. J. Climate, 27(17): 6627−6646. doi: 10.1175/JCLI-D-14-00070.1
    [20]
    Huang J P, Yu H P, Dai A G, et al. 2017. Drylands face potential threat under 2 °C global warming target [J]. Nat. Climate Change, 7(6): 417−422. doi: 10.1038/nclimate3275
    [21]
    IPCC. 2021. Summary for policymakers [M]. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte V, Zhai P, Pirani A, et al, Eds. Cambridge: Cambridge University Press, 20.
    [22]
    Jiang J, Zhou T J, Chen X L, et al. 2020. Future changes in precipitation over Central Asia based on CMIP6 projections [J]. Environ. Res. Lett., 15(5): 054009. doi: 10.1088/1748-9326/ab7d03
    [23]
    Karl T, Trenberth K. 2003. Modern Global Climate Change [J]. Science, 302(5651): 1719−1723. doi: 10.1126/science.109022
    [24]
    Klein Tank A M G, Peterson T C, Quadir D A, et al. 2006. Changes in daily temperature and precipitation extremes in central and South Asia [J]. J. Geophys. Res. Atmos., 111(D16): D16105. doi: 10.1029/2005JD006316
    [25]
    Kopparla P, Fischer E M, Hannay C, et al. 2013. Improved simulation of extreme precipitation in a high-resolution atmosphere model [J]. Geophys. Res. Lett., 40(21): 5803−5808. doi: 10.1002/2013GL057866
    [26]
    Li Z, Chen Y N, Fang G H, et al. 2017. Multivariate assessment and attribution of droughts in Central Asia [J]. Sci. Rep., 7(1): 1316. doi: 10.1038/s41598-017-01473-1
    [27]
    Lioubimtseva E, Cole R. 2006. Uncertainties of climate change in arid environments of Central Asia [J]. Rev. Fish. Sci., 14(1–2): 29–49. doi: 10.1080/10641260500340603
    [28]
    Lioubimtseva E, Henebry G M. 2009. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations [J]. J. Arid Environ., 73(11): 963−977. doi: 10.1016/j.jaridenv.2009.04.022
    [29]
    Meehl G A, Karl T, Easterling D R, et al. 2000. An introduction to trends in extreme weather and climate events: Observations, socioeconomic impacts, terrestrial ecological impacts, and model projections [J]. Bull. Amer. Meteor. Soc., 81(3): 413−416. doi: 10.1175/1520-0477(2000)081<0413:AITTIE>2.3.CO;2
    [30]
    Min S K, Zhang X B, Zwiers F W, et al. 2011. Human contribution to more-intense precipitation extremes [J]. Nature, 470(7334): 378−381. doi: 10.1038/nature09763
    [31]
    Pendergrass A G, Hartmann D L. 2014. Changes in the distribution of rain frequency and intensity in response to global warming [J]. J. Climate, 27(22): 8372−8383. doi: 10.1175/JCLI-D-14-00183.1
    [32]
    Raftery A E, Gneiting T, Balabdaoui F, et al. 2005. Using Bayesian model averaging to calibrate forecast ensembles [J]. Mon. Wea. Rev., 133(5): 1155−1174. doi: 10.1175/MWR2906.1
    [33]
    Seneviratne S J, Donat M G, Mueller B, et al. 2014. No pause in the increase of hot temperature extremes [J]. Nat. Climate Change, 4(3): 161−163. doi: 10.1038/nclimate2145
    [34]
    郯俊岭, 江志红, 马婷婷. 2016. 基于贝叶斯模型的中国未来气温变化预估及不确定性分析 [J]. 气象学报, 74(4): 583−597. doi: 10.11676/qxxb2016.044

    Tan Junling, Jiang Zhihong, Ma Tingting. 2016. Projections of future surface air temperature change and uncertainty over China based on the Bayesian Model Averaging [J]. Acta Meteor. Sinica (in Chinese), 74(4): 583−597. doi: 10.11676/qxxb2016.044
    [35]
    Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram [J]. J. Geophys. Res. Atmos., 106(D7): 7183−7192. doi: 10.1029/2000JD900719
    [36]
    Tian D, Guo Y, Dong W J. 2015. Future changes and uncertainties in temperature and precipitation over China based on CMIP5 models [J]. Adv. Atmos. Sci., 32(4): 487−496. doi: 10.1007/s00376-014-4102-7
    [37]
    Trenberth K E, Dai A, Rasmussen R M, et al. 2003. The changing character of precipitation [J]. Bull. Amer. Meteor. Soc., 84(9): 1205−1218. doi: 10.1175/BAMS-84-9-1205
    [38]
    Ukkola A M, De Kauwe M G, Roderick M L, et al. 2020. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation [J]. Geophys. Res. Lett., 47(11): e2020GL087820. doi: 10.1029/2020GL087820
    [39]
    王芳, 张晋韬. 2020. 《巴黎协定》排放情景下中亚地区降水变化响应 [J]. 地理学报, 75(01): 25−40. Wang F, Zhang J. 2020. Response of precipitation change in Central Asia to emission scenarios consistent with the Paris Agreement [J]. Acta Geographica Sinica (in Chinese), 75(01): 25−40. doi: 10.11821/dlxb202001003
    [40]
    Wang L, Bao Q, He B, et al. 2019. Short commentary on CMIP6 high resolution model Intercomparison project (HighResMIP) [J]. Climate Change Res. (in Chinese), 15(5): 498−502. doi: 10.12006/j.issn.1673-1719.2019.077
    [41]
    Xie P P, Chen M Y, Yang S, et al. 2007. A gauge-based analysis of daily precipitation over East Asia [J]. J. Hydrometeorol., 8(3): 607−626. doi: 10.1175/JHM583.1
    [42]
    Zhai P M, Zhang X B, Wan H, et al. 2005. Trends in total precipitation and frequency of daily precipitation extremes over China [J]. J. Climate, 18(7): 1096−1108. doi: 10.1175/JCLI-3318.1
    [43]
    Zhang M, Chen Y N, Shen Y J, et al. 2017. Changes of precipitation extremes in arid Central Asia [J]. Quaternary International, 436: 16−27. doi: 10.1016/j.quaint.2016.12.024
    [44]
    Zhang J P, Zhao T B, Zhou L B, et al. 2021. Historical changes and future projections of extreme temperature and precipitation along the Sichuan−Tibet Railway [J]. J. Meteor. Res., 35(3): 402−415. doi: 10.1007/s13351-021-0175-2
    [45]
    张影, 徐建华, 陈忠升, 等. 2016. 中亚地区气温变化的时空特征分析 [J]. 干旱区资源与环境, 30(7): 133−137. doi: 10.13448/j.cnki.jalre.2016.228

    Zhang Y, Xu J H, Chen Z S, et al. 2016. Spatial and temporal variation of temperature in Central Asia [J]. J. Arid Land Resour. Environ. (in Chinese), 30(7): 133−137. doi: 10.13448/j.cnki.jalre.2016.228
    [46]
    Zhao T B, Chen L, Ma Z G. 2014. Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models [J]. Chinese Sci. Bull., 59(4): 412−429. doi: 10.1007/s11434-013-0003-x
    [47]
    Zhao T B, Dai A G. 2017. Uncertainties in historical changes and future projections of drought. Part II: Model-simulated historical and future drought changes [J]. Climatic Change, 144(3): 535−548. doi: 10.1007/s10584-016-1742-x
    [48]
    周天军, 邹立维, 吴波, 等. 2014. 中国地球气候系统模式研究进展:CMIP计划实施近20年回顾 [J]. 气象学报, 72(5): 892−907. doi: 10.11676/qxxb2014.083

    Zhou Tianjun, Zou Liwei, Wu Bo, et al. 2014. Development of earth/climate system models in China: A review from the coupled model intercomparison project perspective [J]. Acta Meteor. Sinica (in Chinese), 72(5): 892−907. doi: 10.11676/qxxb2014.083
    [49]
    周天军, 邹立维, 陈晓龙. 2019. 第六次国际耦合模式比较计划(CMIP6)评述 [J]. 气候变化研究进展, 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193

    Zhou T J, Zou L W, Chen X L. 2019. Commentary on the coupled model Intercomparison project phase 6 (CMIP6) [J]. Climate Change Res. (in Chinese), 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193
    [50]
    Zhu X, Wei Z G, Dong W J, et al. 2020. Dynamical downscaling simulation and projection for mean and extreme temperature and precipitation over central Asia [J]. Climate Dyn., 54(7): 3279−3306. doi: 10.1007/s00382-020-05170-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (240) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return