Advanced Search
Volume 28 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
HOU Xuewei, ZHU Bin. 2023. Progress of Research on Global Tropospheric Ozone Variation Characteristics during COVID-19 Pandemic [J]. Climatic and Environmental Research (in Chinese), 28 (1): 103−116 doi: 10.3878/j.issn.1006-9585.2022.22023
Citation: HOU Xuewei, ZHU Bin. 2023. Progress of Research on Global Tropospheric Ozone Variation Characteristics during COVID-19 Pandemic [J]. Climatic and Environmental Research (in Chinese), 28 (1): 103−116 doi: 10.3878/j.issn.1006-9585.2022.22023

Progress of Research on Global Tropospheric Ozone Variation Characteristics during COVID-19 Pandemic

doi: 10.3878/j.issn.1006-9585.2022.22023
Funds:  Innovative Research Group Project of National Natural Science Foundation of China (Grant 42021004), Nantional Key Research and Development Program of China (Grant 2022YFC3701204)
  • Received Date: 2022-02-21
    Available Online: 2022-11-28
  • Publish Date: 2023-01-25
  • Restriction measures against coronavirus disease 2019 (COVID-19) caused atmospheric trace species to change, especially in relation to air pollution. This severe pollutant emission reduction phenomenon during the pandemic led to intensive studies on its behavior. Most studies evidence a decrease in all pollutants except for O3. However, is this highlighted O3 trend a global trend? This study summarized the research results in the past two years and explored the characteristics, mechanisms, and potential environmental effects of tropospheric O3 and its precursors during the COVID-19 pandemic. During lockdown periods, global anthropogenic NOx emissions decreased by at least 15%; especially, those in high-anthropogenic areas decreased by 18%–25%. In some highly polluted areas [volatile organic compound (VOC)-sensitive areas], NOx emissions on the ground decreased by more than 50%. NOx reduction led to the weakened titration effect of NO on O3, leading to an increase in O3 in such highly polluted areas (10%–50%). However, O3 in remote areas and free troposphere (NOx-sensitive areas) decreased, attributed to NOx reduction and regional transmission effect. During the strict control period of the pandemic, surface O3 was still increasing in most cities in China with significantly decreased NOx concentration, indicating that the effective way to control surface O3 concentration in urban areas in China is controlling O3 precursors based on the sensitive area of O3 chemical generation. However, the drastic change in NOx in each region could change the sensitive area of O3 chemical generation, leading to a change in O3 production efficiency. However, due to the lack of VOC emission measurement and their atmospheric concentration, there are still great uncertainties in the trend and main controlling factors of O3 in each region. In the future, the characteristics of O3 in different regions and corresponding O3 regulation strategies influenced by COVID-19 and global warming are also worthy of further study.
  • loading
  • [1]
    Abalos M, Orbe C, Kinnison D E, et al. 2020. Future trends in stratosphere-to-troposphere transport in CCMI models [J]. Atmos. Chem. Phys., 20(11): 6883−6901. doi: 10.5194/acp-20-6883-2020
    Ainsworth E A, Yendrek C R, Sitch S, et al. 2012. The effects of tropospheric ozone on net primary productivity and implications for climate change [J]. Annual Review of Plant Biology, 63: 637−661. doi: 10.1146/annurev-arplant-042110-103829
    安俊岭. 2006. 北京近交通主干线地区的臭氧生成效率 [J]. 环境科学学报, 26(4): 652−657. doi: 10.3321/j.issn:0253-2468.2006.04.019

    An J L. 2006. Ozone production efficiency in Beijing area with high NOx emissions [J]. Acta Sci. Circum. (in Chinese), 26(4): 652−657. doi: 10.3321/j.issn:0253-2468.2006.04.019
    Auvray M, Bey I. 2005. Long-range transport to Europe: Seasonal variations and implications for the European ozone budget [J]. J. Geophys. Res., 110(D11): D11303. doi: 10.1029/2004JD005503
    Balamurugan V, Chen J, Qu Z, et al. 2021. Tropospheric NO2 and O3 response to COVID-19 lockdown restrictions at the national and urban scales in Germany [J]. J. Geophys. Res., 126(19): e2021JD035440. doi: 10.1029/2021JD035440
    Bauwens M, Compernolle S, Stavrakou T, et al. 2020. Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations [J]. Geophys. Res. Lett., 47(11): e2020GL087978. doi: 10.1029/2020GL087978
    Bekbulat B, Apte J S, Millet D B, et al. 2021. Changes in criteria air pollution levels in the US before, during, and after Covid-19 stay-at-home orders: Evidence from regulatory monitors [J]. Sci. Total Environ., 769: 144693. doi: 10.1016/j.scitotenv.2020.144693
    Bera B, Bhattacharjee S, Shit P K, et al. 2022. Variation and correlation between ultraviolet index and tropospheric ozone during COVID-19 lockdown over megacities of India [J]. Stochastic Environmental Research and Risk Assessment, 36(2): 409−427. doi: 10.1007/s00477-021-02033-w
    Bouarar I, Gaubert B, Brasseur G P, et al. 2021. Ozone anomalies in the free troposphere during the COVID-19 pandemic [J]. Geophys. Res. Lett., 48(16): e2021GL094204. doi: 10.1029/2021GL094204
    Bourgeois I, Peischl J, Neuman J A, et al. 2021. Large contribution of biomass burning emissions to ozone throughout the global remote troposphere [J]. Proc. Natl. Acad. Sci. USA, 118(52): e2109628118. doi: 10.1073/pnas.2109628118
    Brandt J, Silver J D, Frohn L M, et al. 2012. An integrated model study for Europe and North America using the Danish Eulerian Hemispheric Model with focus on intercontinental transport of air pollution [J]. Atmos. Environ., 53: 156−176. doi: 10.1016/j.atmosenv.2012.01.011
    Brasseur G P, Schultz M, Granier C, et al. 2006. Impact of climate change on the future chemical composition of the global troposphere [J]. J. Climate, 19(16): 3932−3951. doi: 10.1175/JCLI3832.1
    Butler T M, Stock Z S, Russo M R, et al. 2012. Megacity ozone air quality under four alternative future scenarios [J]. Atmos. Chem. Phys., 12(10): 4413−4428. doi: 10.5194/acp-12-4413-2012
    Cazorla M, Herrera E, Palomeque E, et al. 2021. What the COVID-19 lockdown revealed about photochemistry and ozone production in Quito, Ecuador [J]. Atmos. Pollut. Res., 12(1): 124−133. doi: 10.1016/j.apr.2020.08.028
    Chang K L, Cooper O R, Gaudel A, et al. 2022. Impact of the COVID-19 economic downturn on tropospheric ozone trends: An uncertainty weighted data synthesis for quantifying regional anomalies above western North America and Europe [J]. AGU Advances, 3(2): e2021AV000542. doi: 10.1029/2021AV000542
    Chen L W A, Chien L C, Li Y, et al. 2020. Nonuniform impacts of COVID-19 lockdown on air quality over the United States [J]. Sci. Total Environ., 745: 141105. doi: 10.1016/j.scitotenv.2020.141105
    Choi Y, Souri A H. 2015. Seasonal behavior and long-term trends of tropospheric ozone, its precursors and chemical conditions over Iran: A view from space [J]. Atmos. Environ., 106: 232−240. doi: 10.1016/j.atmosenv.2015.02.012
    Chossière G P, Xu H F, Dixit Y, et al. 2021. Air pollution impacts of COVID-19-related containment measures [J]. Sci. Adv., 7(21): eabe1178. doi: 10.1126/sciadv.abe1178
    Clark H, Bennouna Y, Tsivlidou M, et al. 2021. The effects of the COVID-19 lockdowns on the composition of the troposphere as seen by In-service Aircraft for a Global Observing System (IAGOS) at Frankfurt [J]. Atmos. Chem. Phys., 21(21): 16237−16256. doi: 10.5194/acp-21-16237-2021
    Collivignarelli M C, Abbà A, Bertanza G, et al. 2020. Lockdown for CoViD-2019 in Milan: What are the effects on air quality? [J]. Sci. Total Environ., 732: 139280. doi: 10.1016/j.scitotenv.2020.139280
    Cooper O R, Parrish D D, Stohl A, et al. 2010. Increasing springtime ozone mixing ratios in the free troposphere over western North America [J]. Nature, 463(7279): 344−348. doi: 10.1038/nature08708
    Cooper O R, Parrish D D, Ziemke J, et al. 2014. Global distribution and trends of tropospheric ozone: An observation-based review [J]. Elementa: Science of the Anthropocene, 2: 000029. doi: 10.12952/journal.elementa.000029
    Cristofanelli P, Arduni J, Serva F, et al. 2021a. Negative ozone anomalies at a high mountain site in northern Italy during 2020: A possible role of COVID-19 lockdowns? [J]. Environ. Res. Lett., 16(7): 074029. doi: 10.1088/1748-9326/ac0b6a
    Cristofanelli P, Gutiérrez I, Adame J A, et al. 2021b. Interannual and seasonal variability of NOx observed at the Mt. Cimone GAW/WMO global station (2165 m a. s. l., Italy) [J]. Atmos. Environ., 249: 118245. doi: 10.1016/j.atmosenv.2021.118245
    Cuesta J, Costantino L, Beekmann M, et al. 2022. Ozone pollution during the COVID-19 lockdown in the spring of 2020 over Europe, analysed from satellite observations, in situ measurements, and models [J]. Atmos. Chem. Phys., 22(7): 4471−4489. doi: 10.5194/acp-22-4471-2022
    Davis D D, Crawford J, Chen G, et al. 1996. Assessment of ozone photochemistry in the western North Pacific as inferred from PEM-West A observations during the fall 1991 [J]. J. Geophys. Res., 101(D1): 2111−2134. doi: 10.1029/95JD02755
    Derwent R G, Utembe S R, Jenkin M E, et al. 2015. Tropospheric ozone production regions and the intercontinental origins of surface ozone over Europe [J]. Atmos. Environ., 112: 216−224. doi: 10.1016/j.atmosenv.2015.04.049
    Ding A J, Wang T, Thouret V, et al. 2008. Tropospheric ozone climatology over Beijing: Analysis of aircraft data from the MOZAIC program [J]. Atmos. Chem. Phys., 8(1): 1−13. doi: 10.5194/acp-8-1-2008
    Ding J, van der A R J, Eskes H J, et al. 2020. NOx emissions reduction and rebound in China due to the COVID-19 crisis [J]. Geophys. Res. Lett., 47(19): e2020GL089912. doi: 10.1029/2020GL089912
    Dommen J, Prévôt A S H, Hering A M, et al. 1999. Photochemical production and aging of an urban air mass [J]. J. Geophys. Res., 104(D5): 5493−5506. doi: 10.1029/1998JD100053
    El-Sayed M M H, Elshorbany Y F, Koehler K. 2021. On the impact of the COVID-19 pandemic on air quality in Florida [J]. Environ. Pollut., 285: 117451. doi: 10.1016/j.envpol.2021.117451
    Elshorbany Y F, Kapper H C, Ziemke J R, et al. 2021. The status of air quality in the United States during the COVID-19 pandemic: A remote sensing perspective [J]. Remote Sens., 13(3): 369. doi: 10.3390/rs13030369
    Emmons L K, Hess P G, Lamarque J F, et al. 2012. Tagged ozone mechanism for MOZART-4, CAM-chem and other chemical transport models [J]. Geosci. Model Dev., 5(6): 1531−1542. doi: 10.5194/gmd-5-1531-2012
    Fadnavis S, Dhomse S, Ghude S, et al. 2014. Ozone trends in the vertical structure of Upper Troposphere and Lower stratosphere over the Indian monsoon region [J]. Int. J. Environ. Sci. Technol., 11(2): 529−542. doi: 10.1007/s13762-013-0258-4
    Feng S Z, Jiang F, Wang H M, et al. 2020. NOx emission changes over China during the COVID-19 epidemic inferred from surface NO2 observations [J]. Geophys. Res. Lett., 47(19): e2020GL090080. doi: 10.1029/2020GL090080
    Fioletov V, McLinden C A, Griffin D, et al. 2022. Quantifying urban, industrial, and background changes in NO2 during the COVID-19 lockdown period based on TROPOMI satellite observations [J]. Atmos. Chem. Phys., 22(6): 4201−4236. doi: 10.5194/acp-22-4201-2022
    Fiore A M, Naik V, Spracklen D V, et al. 2012. Global air quality and climate [J]. Chem. Soc. Rev., 41(19): 6663−6683. doi: 10.1039/c2cs35095e
    Fu F, Purvis-Roberts K L, Williams B. 2020. Impact of the COVID-19 pandemic lockdown on air pollution in 20 major cities around the world [J]. Atmosphere, 11(11): 1189. doi: 10.3390/atmos11111189
    Gaubert B, Bouarar I, Doumbia T, et al. 2021. Global changes in secondary atmospheric pollutants during the 2020 COVID-19 pandemic [J]. J. Geophys. Res., 126(8): e2020JD034213. doi: 10.1029/2020JD034213
    Ghahremanloo M, Lops Y, Choi Y, et al. 2021. Impact of the COVID-19 outbreak on air pollution levels in East Asia [J]. Sci. Total Environ., 754: 142226. doi: 10.1016/j.scitotenv.2020.142226
    Grange S K, Lee J D, Drysdale W S, et al. 2021. COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas [J]. Atmos. Chem. Phys., 21(5): 4169−4185. doi: 10.5194/acp-21-4169-2021
    Guenther A B, Monson R K, Fall R. 1991. Isoprene and monoterpene emission rate variability: Observations with eucalyptus and emission rate algorithm development [J]. J. Geophys. Res., 96(D6): 10799−10808. doi: 10.1029/91JD00960
    Guicherit R, Roemer M. 2000. Tropospheric ozone trends [J]. Chemosphere-Global Change Science, 2(2): 167−183. doi: 10.1016/S1465-9972(00)00008-8
    Hirsch A I, Munger J W, Jacob D J, et al. 1996. Seasonal variation of the ozone production efficiency per unit NOx at Harvard Forest, Massachusetts [J]. J. Geophys. Res., 101(D7): 12659−12666. doi: 10.1029/96JD00557
    胡建林, 张远航. 2005. 长江三角洲地区臭氧生成过程分析 [J]. 环境科学研究, 18(2): 13−18. doi: 10.3321/j.issn:1001-6929.2005.02.003

    Hu J L, Zhang Y H. 2005. Process analysis of ozone formation in the Yangtze River Delta [J]. Research of Environmental Sciences (in Chinese), 18(2): 13−18. doi: 10.3321/j.issn:1001-6929.2005.02.003
    Huang X, Ding A J, Gao J, et al. 2021. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China [J]. Natl. Sci. Rev., 8(2): nwaa137. doi: 10.1093/nsr/nwaa137
    Huang Y H, Zhou J L, Yu Y, et al. 2020. Uncertainty in the impact of the COVID-19 pandemic on air quality in Hong Kong, China [J]. Atmosphere, 11(9): 914. doi: 10.3390/atmos11090914
    Jacob D J, Logan J A, Murti P P. 1999. Effect of rising Asian emissions on surface ozone in the United States [J]. Geophys. Res. Lett., 26(14): 2175−2178. doi: 10.1029/1999GL900450
    Jaffe D, Anderson T, Covert D, et al. 1999. Transport of Asian air pollution to North America [J]. Geophys. Res. Lett., 26(6): 711−714. doi: 10.1029/1999GL900100
    Ju M J, Oh J, Choi Y H. 2021. Changes in air pollution levels after COVID-19 outbreak in Korea [J]. Sci. Total Environ., 750: 141521. doi: 10.1016/j.scitotenv.2020.141521
    Keller C A, Evans M J, Knowland K E, et al. 2021. Global impact of COVID-19 restrictions on the surface concentrations of nitrogen dioxide and ozone [J]. Atmos. Chem. Phys., 21(5): 3555−3592. doi: 10.5194/acp-21-3555-2021
    Kissler S M, Tedijanto C, Goldstein E, et al. 2020. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period [J]. Science, 368(6493): 860−868. doi: 10.1126/science.abb5793
    Kleinman L I, Daum P H, Lee Y N, et al. 2001. Sensitivity of ozone production rate to ozone precursors [J]. Geophys. Res. Lett., 28(15): 2903−2906. doi: 10.1029/2000GL012597
    Kleinman L I, Daum P H, Lee Y N, et al. 2002. Ozone production efficiency in an urban area [J]. J. Geophys. Res., 107(D23): 4733. doi: 10.1029/2002JD002529
    Kotelnikov S N, Stepanov E V. 2021. Anomalous dynamics of tropospheric ozone in the spring of 2020 in Central Russia [J]. Bull. Lebedev Phys. Inst., 48(3): 92−96. doi: 10.3103/S1068335621030076
    Kriegler E, O’Neill B C, Hallegatte S, et al. 2012. The need for and use of socio-economic scenarios for climate change analysis: A new approach based on shared socio-economic pathways [J]. Global Environmental Change, 22(4): 807−822. doi: 10.1016/j.gloenvcha.2012.05.005
    Kroll J H, Heald C L, Cappa C D, et al. 2020. The complex chemical effects of COVID-19 shutdowns on air quality [J]. Nature Chemistry, 12(9): 777−779. doi: 10.1038/s41557-020-0535-z
    Lee J D, Drysdale W S, Finch D P, et al. 2020. UK surface NO2 levels dropped by 42% during the COVID-19 lockdown: Impact on surface O3 [J]. Atmos. Chem. Phys., 20(24): 15743−15759. doi: 10.5194/acp-20-15743-2020
    Li H C, Chen K S, Huang C H, et al. 2010. Meteorologically adjusted long-term trend of ground-level ozone concentrations in Kaohsiung County, southern Taiwan [J]. Atmos. Environ., 44(29): 3605−3608. doi: 10.1016/j.atmosenv.2010.04.011
    Li K, Jacob D J, Liao H, et al. 2021. Ozone pollution in the North China Plain spreading into the late-winter haze season [J]. Proc. Natl. Acad. Sci. USA, 118(10): e2015797118. doi: 10.1073/PNAS.2015797118
    Li X Y, Liu J F, Mauzerall D L, et al. 2014. Effects of trans-Eurasian transport of air pollutants on surface ozone concentrations over Western China [J]. J. Geophys. Res., 119(21): 12338−12354. doi: 10.1002/2014JD021936
    Lin Y K, Lin T H, Chang S C. 2010. The changes in different ozone metrics and their implications following precursor reductions over northern Taiwan from 1994 to 2007 [J]. Environ. Monit. Assess., 169(1–4): 143–157. doi: 10.1007/s10661-009-1158-4
    Liu F, Page A, Strode S A, et al. 2020. Abrupt decline in tropospheric nitrogen dioxide over China after the outbreak of COVID-19 [J]. Sci. Adv., 6(28): eabc2992. doi: 10.1126/sciadv.abc2992
    Liu H Y, Jacob D J, Bey I, et al. 2003. Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations [J]. J. Geophys. Res., 108(D20): 8786. doi: 10.1029/2002JD003102
    Liu S C, Trainer M, Fehsenfeld F C, et al. 1987. Ozone production in the rural troposphere and the implications for regional and global ozone distributions [J]. J. Geophys. Res., 92(D4): 4191−4207. doi: 10.1029/JD092iD04p04191
    Lokhandwala S, Gautam P. 2020. Indirect impact of COVID-19 on environment: A brief study in Indian context [J]. Environ. Res., 188: 109807. doi: 10.1016/j.envres.2020.109807
    Lu X, Ye X P, Zhou M, et al. 2021. The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China [J]. Nat. Commun., 12(1): 5021. doi: 10.1038/s41467-021-25147-9
    Lund M T, Myhre G, Samset B H. 2019. Anthropogenic aerosol forcing under the Shared Socioeconomic Pathways [J]. Atmos. Chem. Phys., 19(22): 13827−13839. doi: 10.5194/acp-19-13827-2019
    Marwah M, Agrawala P K. 2022. COVID-19 lockdown and environmental pollution: An Indian multi-state investigation [J]. Environ. Monit. Assess., 194(2): 49. doi: 10.1007/s10661-021-09693-9
    Matthias V, Quante M, Arndt J A, et al. 2021. The role of emission reductions and the meteorological situation for air quality improvements during the COVID-19 lockdown period in central Europe [J]. Atmos. Chem. Phys., 21(18): 13931−13971. doi: 10.5194/acp-21-13931-2021
    Menut L, Bessagnet B, Siour G, et al. 2020. Impact of lockdown measures to combat Covid-19 on air quality over western Europe [J]. Sci. Total Environ., 741: 140426. doi: 10.1016/j.scitotenv.2020.140426
    Mertens M, Jöckel P, Matthes S, et al. 2021. COVID-19 induced lower-tropospheric ozone changes [J]. Environ. Res. Lett., 16(6): 064005. doi: 10.1088/1748-9326/abf191
    Miyazaki K, Bowman K, Sekiya T, et al. 2021. Global tropospheric ozone responses to reduced NOx emissions linked to the COVID-19 worldwide lockdowns [J]. Sci. Adv., 7(24): eabf7460. doi: 10.1126/sciadv.abf7460
    Monks P S, Archibald A T, Colette A, et al. 2015. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer [J]. Atmos. Chem. Phys., 15(15): 8889−8973. doi: 10.5194/acp-15-8889-2015
    Moss R H, Edmonds J A, Hibbard K A, et al. 2010. The next generation of scenarios for climate change research and assessment [J]. Nature, 463(7282): 747−756. doi: 10.1038/nature08823
    Newell R E, Evans M J. 2000. Seasonal changes in pollutant transport to the North Pacific: The relative importance of Asian and European sources [J]. Geophys. Res. Lett., 27(16): 2509−2512. doi: 10.1029/2000GL011501
    Nunnermacker L J, Imre D, Daum P H, et al. 1998. Characterization of the Nashville urban plume on July 3 and July 18, 1995 [J]. J. Geophys. Res., 103(D21): 28129−28148. doi: 10.1029/98JD01961
    Nussbaumer C M, Pozzer A, Tadic I, et al. 2022. Tropospheric ozone production and chemical regime analysis during the COVID-19 lockdown over Europe [J]. Atmos. Chem. Phys., 22(9): 6151−6165. doi: 10.5194/acp-22-6151-2022
    Oltmans S J, Lefohn A S, Harris J M, et al. 2006. Long-term changes in tropospheric ozone [J]. Atmos. Environ., 40(17): 3156−3173. doi: 10.1016/j.atmosenv.2006.01.029
    Oltmans S J, Lefohn A S, Shadwick D, et al. 2013. Recent tropospheric ozone changes—A pattern dominated by slow or no growth [J]. Atmos. Environ., 67: 331−351. doi: 10.1016/j.atmosenv.2012.10.057
    Ordóñez C, Garrido-Perez J M, García-Herrera R. 2020. Early spring near-surface ozone in Europe during the COVID-19 shutdown: Meteorological effects outweigh emission changes [J]. Sci. Total Environ., 747: 141322. doi: 10.1016/j.scitotenv.2020.141322
    Pan S, Jung J, Li Z T, et al. 2020. Air quality implications of COVID-19 in California [J]. Sustainability, 12(17): 7067. doi: 10.3390/su12177067
    Parrish D D, Law K S, Staehelin J, et al. 2012. Long-term changes in lower tropospheric baseline ozone concentrations at northern mid-latitudes [J]. Atmos. Chem. Phys., 12(23): 11485−11504. doi: 10.5194/acp-12-11485-2012
    Patel H, Talbot N, Salmond J, et al. 2020. Implications for air quality management of changes in air quality during lockdown in Auckland (New Zealand) in response to the 2020 SARS-CoV-2 epidemic [J]. Sci. Total Environ., 746: 141129. doi: 10.1016/j.scitotenv.2020.141129
    Pathakoti M, Muppalla A, Hazra S, et al. 2020. An assessment of the impact of a nation-wide lockdown on air pollution—A remote sensing perspective over India [J]. Atmos. Chem. Phys. doi: 10.5194/acp-2020-621
    Pepe E, Bajardi P, Gauvin L, et al. 2020. COVID-19 outbreak response, a dataset to assess mobility changes in Italy following national lockdown [J]. Scientific Data, 7(1): 230. doi: 10.1038/s41597-020-00575-2
    Peralta O, Ortínez-Alvarez A, Torres-Jardón R, et al. 2021. Ozone over Mexico City during the COVID-19 pandemic [J]. Sci. Total Environ., 761: 143183. doi: 10.1016/j.scitotenv.2020.143183
    Pochanart P, Akimoto H, Kajii Y, et al. 2003. Regional background ozone and carbon monoxide variations in remote Siberia/East Asia [J]. J. Geophys. Res., 108(D1): 4028. doi: 10.1029/2001JD001412
    Riahi K, Rao S, Krey V, et al. 2011. RCP 8.5—A scenario of comparatively high greenhouse gas emissions [J]. Climatic Change, 109(1–2): 33–57. doi: 10.1007/s10584-011-0149-y
    Ryerson T B, Buhr M P, Frost G J, et al. 1998. Emissions lifetimes and ozone formation in power plant plumes [J]. J. Geophys. Res., 103(D17): 22569−22583. doi: 10.1029/98JD01620
    Shi X Q, Brasseur G P. 2020. The response in air quality to the reduction of Chinese economic activities during the COVID-19 outbreak [J]. Geophys. Res. Lett., 47(11): e2020GL088070. doi: 10.1029/2020GL088070
    Sicard P, De Marco A, Agathokleous E, et al. 2020. Amplified ozone pollution in cities during the COVID-19 lockdown [J]. Sci. Total Environ., 735: 139542. doi: 10.1016/j.scitotenv.2020.139542
    Siciliano B, Dantas G, da Silva C M, et al. 2020. Increased ozone levels during the COVID-19 lockdown: Analysis for the city of Rio de Janeiro, Brazil [J]. Sci. Total Environ., 737: 139765. doi: 10.1016/j.scitotenv.2020.139765
    Smith S J, Wigley T M L. 2006. Multi-gas forcing stabilization with MiniCAM [J]. Energy Journal, 27(Special Issue): 373–391. doi: 10.5547/ISSN0195-6574-EJ-VolSI2006-NoSI3-19
    Steinbrecht W, Kubistin D, Plass-Dülmer C, et al. 2021. COVID-19 crisis reduces free tropospheric ozone across the Northern Hemisphere [J]. Geophys. Res. Lett., 48(5): e2020GL091987. doi: 10.1029/2020GL091987
    Stevenson D S, Young P J, Naik V, et al. 2013. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) [J]. Atmos. Chem. Phys., 13(6): 3063−3085. doi: 10.5194/acp-13-3063-2013
    Stratoulias D, Nuthammachot N. 2020. Air quality development during the COVID-19 pandemic over a medium-sized urban area in Thailand [J]. Sci. Total Environ., 746: 141320. doi: 10.1016/j.scitotenv.2020.141320
    Sudo K, Takahashi M, Akimoto H. 2003. Future changes in stratosphere–troposphere exchange and their impacts on future tropospheric ozone simulations [J]. Geophys. Res. Lett., 30(24): 2256. doi: 10.1029/2003GL018526
    Tarasick D, Galbally I E, Cooper O R, et al. 2019. Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties [J]. Elementa: Science of the Anthropocene, 7: 39. doi: 10.1525/elementa.376
    Tavella R A, da Silva Júnior F M R. 2021. Watch out for trends: Did ozone increased or decreased during the COVID-19 pandemic? [J]. Environ. Sci. Pollut. Res., 28(47): 67880−67885. doi: 10.1007/s11356-021-17142-w
    Thielmann A, Prévôt A S H, Staehelin J. 2002. Sensitivity of ozone production derived from field measurements in the Italian Po basin [J]. J. Geophys. Res., 107(D22): 8194. doi: 10.1029/2000JD000119
    van Vuuren D P, Lucas P L, Hilderink H. 2007. Downscaling drivers of global environmental change: Enabling use of global SRES scenarios at the national and grid levels [J]. Global Environmental Change, 17(1): 114−130. doi: 10.1016/j.gloenvcha.2006.04.004
    Venter Z S, Aunan K, Chowdhury S, et al. 2020. COVID-19 lockdowns cause global air pollution declines [J]. Proc. Natl. Acad. Sci. USA, 117(32): 18984−18990. doi: 10.1073/pnas.2006853117
    Verstraeten W W, Neu J L, Williams J E, et al. 2015. Rapid increases in tropospheric ozone production and export from China [J]. Nature Geoscience, 8(9): 690−695. doi: 10.1038/ngeo2493
    Wang H L, Huang C, Tao W, et al. 2022. Seasonality and reduced nitric oxide titration dominated ozone increase during COVID-19 lockdown in eastern China [J]. npj Climate and Atmospheric Science, 5(1): 24. doi: 10.1038/s41612-022-00249-3
    Wang H L, Tan Y, Zhang L X, et al. 2021. Characteristics of air quality in different climatic zones of China during the COVID-19 lockdown [J]. Atmos. Pollut. Res., 12(12): 101247. doi: 10.1016/J.APR.2021.101247
    Wang L Q, Li M Y, Yu S C, et al. 2020. Unexpected rise of ozone in urban and rural areas, and sulfur dioxide in rural areas during the coronavirus city lockdown in Hangzhou, China: Implications for air quality [J]. Environ. Chem. Lett., 18(5): 1713−1723. doi: 10.1007/s10311-020-01028-3
    Wang T, Wei X L, Ding A J, et al. 2009. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994–2007 [J]. Atmos. Chem. Phys., 9(16): 6217−6227. doi: 10.5194/acp-9-6217-2009
    Wang Y H, Logan J A, Jacob D J. 1998. Global simulation of tropospheric O3-NOx-hydrocarbon chemistry: 2. Model evaluation and global ozone budget [J]. J. Geophys. Res., 103(D9): 10727−10755. doi: 10.1029/98JD00157
    Webster M D, Babiker M, Mayer M, et al. 2002. Uncertainty in emissions projections for climate models [J]. Atmos. Environ., 36(22): 3659−3670. doi: 10.1016/S1352-2310(02)00245-5
    Wild O, Akimoto H. 2001. Intercontinental transport of ozone and its precursors in a three-dimensional global CTM [J]. J. Geophys. Res., 106(D21): 27729−27744. doi: 10.1029/2000JD000123
    Wild O, Pochanart P, Akimoto H. 2004. Trans-Eurasian transport of ozone and its precursors [J]. J. Geophys. Res., 109(D11): D11302. doi: 10.1029/2003JD004501
    Xie B, Zhang H, Yang D D, et al. 2016. A modeling study of effective radiative forcing and climate response due to increased methane concentration [J]. Advances in Climate Change Research, 7(4): 241−246. doi: 10.1016/j.accre.2016.12.001
    Xing J, Li S W, Jiang Y Q, et al. 2020. Quantifying the emission changes and associated air quality impacts during the COVID-19 pandemic on the North China Plain: A response modeling study [J]. Atmos. Chem. Phys., 20(22): 14347−14359. doi: 10.5194/acp-20-14347-2020
    徐晓斌, 葛宝珠, 林伟立. 2009. 臭氧生成效率(OPE)相关研究进展 [J]. 地球科学进展, 24(8): 845−853. doi: 10.3321/j.issn:1001-8166.2009.08.001

    Xu X B, Ge B Z, Lin W L. 2009. Progresses in the research of ozone production efficiency (OPE) [J]. Advances in Earth Science (in Chinese), 24(8): 845−853. doi: 10.3321/j.issn:1001-8166.2009.08.001
    Yang Y, Ren L L, Li H M, et al. 2020. Fast climate responses to aerosol emission reductions during the COVID-19 pandemic [J]. Geophys. Res. Lett., 47(19): e2020GL089788. doi: 10.1029/2020GL089788
    Yin H, Liu C, Hu Q H, et al. 2021. Opposite impact of emission reduction during the COVID-19 lockdown period on the surface concentrations of PM2.5 and O3 in Wuhan, China [J]. Environ. Pollut., 289: 117899. doi: 10.1016/j.envpol.2021.117899
    Young P J, Archibald A T, Bowman K W, et al. 2013. Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) [J]. Atmos. Chem. Phys., 13(4): 2063−2090. doi: 10.5194/acp-13-2063-2013
    Yue X, Unger N. 2014. Ozone vegetation damage effects on gross primary productivity in the United States [J]. Atmos. Chem. Phys., 14(17): 9137−9153. doi: 10.5194/acp-14-9137-2014
    Zangari S, Hill D T, Charette A T, et al. 2020. Air quality changes in New York City during the COVID-19 pandemic [J]. Sci. Total Environ., 742: 140496. doi: 10.1016/j.scitotenv.2020.140496
    Zanis P, Ganser A, Zellweger C, et al. 2007. Seasonal variability of measured ozone production efficiencies in the lower free troposphere of Central Europe [J]. Atmos. Chem. Phys., 7(1): 223−236. doi: 10.5194/acp-7-223-2007
    Zaveri R A, Berkowitz C M, Kleinman L I, et al. 2003. Ozone production efficiency and NOx depletion in an urban plume: Interpretation of field observations and implications for evaluating O3-NOx-VOC sensitivity [J]. J. Geophys. Res., 108(D14): 4436. doi: 10.1029/2002JD003144
    Zhang K, Liu Z Q, Zhang X J, et al. 2022. Insights into the significant increase in ozone during COVID-19 in a typical urban city of China [J]. Atmos. Chem. Phys., 22(7): 4853−4866. doi: 10.5194/acp-22-4853-2022
    Zhang Q Q, Pan Y P, He Y X, et al. 2021. Substantial nitrogen oxides emission reduction from China due to COVID-19 and its impact on surface ozone and aerosol pollution [J]. Sci. Total Environ., 753: 142238. doi: 10.1016/j.scitotenv.2020.142238
    Zhao F, Liu C, Cai Z N, et al. 2021. Ozone profile retrievals from TROPOMI: Implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China [J]. Sci. Total Environ., 764: 142886. doi: 10.1016/j.scitotenv.2020.142886
    Zhu J, Chen L, Liao H, et al. 2021. Enhanced PM2.5 decreases and O3 increases in China during COVID-19 lockdown by aerosol–radiation feedback [J]. Geophys. Res. Lett., 48(2): e2020GL090260. doi: 10.1029/2020GL090260
    Zhu S Q, Poetzscher J, Shen J Y, et al. 2021. Comprehensive insights into O3 changes during the COVID-19 from O3 formation regime and atmospheric oxidation capacity [J]. Geophys. Res. Lett., 48(10): e2021GL093668. doi: 10.1029/2021GL093668
    Zhu Y, Liu J, Wang T J, et al. 2017. The impacts of meteorology on the seasonal and interannual variabilities of ozone transport from North America to East Asia [J]. J. Geophys. Res., 122(20): 10612−10636. doi: 10.1002/2017JD026761
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (89) PDF downloads(18) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint