Advanced Search
Volume 28 Issue 3
May  2023
Turn off MathJax
Article Contents
YAO Fangling, QIN Zhengkun, LIN Zhaohui, et al. 2023. Bias Correction Method Based on Rotated Empirical Orthogonal Function for Seasonal Precipitation Prediction on Basin Scale [J]. Climatic and Environmental Research (in Chinese), 28 (3): 327−342 doi: 10.3878/j.issn.1006-9585.2022.22071
Citation: YAO Fangling, QIN Zhengkun, LIN Zhaohui, et al. 2023. Bias Correction Method Based on Rotated Empirical Orthogonal Function for Seasonal Precipitation Prediction on Basin Scale [J]. Climatic and Environmental Research (in Chinese), 28 (3): 327−342 doi: 10.3878/j.issn.1006-9585.2022.22071

Bias Correction Method Based on Rotated Empirical Orthogonal Function for Seasonal Precipitation Prediction on Basin Scale

doi: 10.3878/j.issn.1006-9585.2022.22071
Funds:  National Key Research and Development Program of China (Grant 2018YFC1507302), National Natural Science Foundation of China (Grant 41805076), Fundamental Research Funds of the Chinese Academy of Meteorological Sciences (Grant 2019Z006)
  • Received Date: 2022-05-16
    Available Online: 2022-08-28
  • Publish Date: 2023-05-25
  • Short-term climate prediction of precipitation in the basin is imperative for disaster prevention and reduction in the basin. To further improve the prediction capacity of the new-generation atmospheric general circulation model, IAP AGCM 4.1 by the Institute of Atmospheric Physics of the Chinese Academy of Sciences, on the summer precipitation in the Huaihe and Yangtze River Basins, a regional Empirical Orthogonal Function (EOF) correction scheme suitable for the two river basins is established based on the analysis of the regional characteristics of the summer precipitation using the rotating EOF (REOF) method. Furthermore, the new scheme was validated based on 30-year (1981–2010) hindcasts of the IAP AGCM 4.1 climate model in the Huaihe and Yangtze River Basins. Results reveal that the new correction method significantly improves the prediction of summer precipitation in the Huaihe River Basin, with the average correlation coefficient of the Huaihe River Basin increasing from 0.03 to 0.22. Moreover, the seasonal precipitation forecast of the Yangtze River Basin is also significantly improved, with the average correlation coefficient increasing from −0.05 to 0.24. The results of the new correction method are notably better than those of previous methods based on whole-basin data, confirming that using strong local precipitation characteristics to determine the correction area based on REOF analysis can improve the effect and stability of EOF correction. The proposed method can potentially be applied to other basins as well.
  • loading
  • [1]
    Chen L J, Chen D L, Wang H J, et al. 2009. Regionalization of precipitation regimes in China [J]. Atmos. Oceanic Sci. Lett., 2(5): 301−307. doi: 10.1080/16742834.2009.11446818
    [2]
    陈豫英, 陈楠, 王式功, 等. 2010. 中蒙干旱半干旱区降水的时空变化特征(I):年降水特征及5~9月降水的REOF分析 [J]. 高原气象, 29(1): 33−43.

    Chen Yuying, Chen Nan, Wang Shigong, et al. 2010. Temporal and spatial change features of precipitation over China−Mongolia arid- and semiarid-areas (I): Annual rainfall feature and May−September one REOF analyses [J]. Plateau Meteor. (in Chinese), 29(1): 33−43.
    [3]
    陈子煊, 林朝晖, 江志红, 等. 2018. IAP AGCM 4.1对淮河流域夏季降水的预报技巧评估 [J]. 气象科学, 38(4): 489−497. doi: 10.3969/2017jms.0045

    Chen Zixuan, Lin Zhaohui, Jiang Zhihong, et al. 2018. Evaluation on the forecast skill of summer rainfall over Huaihe River basin with IAP AGCM4.1 [J]. Journal of the Meteorological Sciences (in Chinese), 38(4): 489−497. doi: 10.3969/2017jms.0045
    [4]
    程智, 徐敏, 段春锋. 2016. CFSv2模式对淮河流域夏季气温降水预测能力的评估 [J]. 暴雨灾害, 35(4): 351−358. doi: 10.3969/j.issn.1004-9045.2016.04.007

    Cheng Zhi, Xu Min, Duan Chunfeng. 2016. Evaluation on summer temperature and precipitation predictions in Huai River basin by CFSv2 model [J]. Torrential Rain and Disasters (in Chinese), 35(4): 351−358. doi: 10.3969/j.issn.1004-9045.2016.04.007
    [5]
    程智, 段春锋, 邓淑梅. 2017. 多模式集合优选方案在淮河流域夏季降水预测中的应用 [J]. 热带气象学报, 33(2): 241−249. doi: 10.16032/j.issn.1004-4965.2017.02.010

    Cheng Zhi, Duan Chunfeng, Deng Shumei. 2017. Application of optimization scheme of multi-model ensemble in prediction of the Huaihe River basin summer precipitation [J]. Journal of Tropical Meteorology (in Chinese), 33(2): 241−249. doi: 10.16032/j.issn.1004-4965.2017.02.010
    [6]
    Chu J T, Xia J, Xu C Y. 2008. Statistical downscaling the daily precipitation for climate change scenarios in Haihe River basin of China [J]. Journal of Natural Resources, 23(6): 1068−1077.
    [7]
    崔讲学, 王俊, 田刚, 等. 2018. 我国流域水文气象业务进展回顾与展望 [J]. 气象科技进展, 8(4): 52−58. doi: 10.3969/j.issn.2095-1973.2018.04.005

    Cui Jiangxue, Wang Jun, Tian Gang, et al. 2018. The review and outlook on the development of basin hydrometeorological applications and services in China [J]. Advances in Meteorological Science and Technology (in Chinese), 8(4): 52−58. doi: 10.3969/j.issn.2095-1973.2018.04.005
    [8]
    贾小龙, 陈丽娟, 高辉, 等. 2013. 我国短期气候预测技术进展 [J]. 应用气象学报, 24(6): 641−655. doi: 10.3969/j.issn.1001-7313.2013.06.001

    Jia Xiaolong, Chen Lijuan, Gao Hui, et al. 2013. Advances of the short-range climate prediction in China [J]. Journal of Applied Meteorological Science (in Chinese), 24(6): 641−655. doi: 10.3969/j.issn.1001-7313.2013.06.001
    [9]
    郎咸梅, 王会军, 周广庆. 2003. 我国2003年冬季气候特征与2004年春季沙尘气候形势的实时预测初步报告 [J]. 气候与环境研究, 8(4): 381−386. doi: 10.3969/j.issn.1006-9585.2003.04.001

    Lang Xianmei, Wang Huijun, Zhou Guangqing. 2003. Real-time prediction of the climate feature for 2003 winter and dust climate for 2004 spring over China [J]. Climatic and Environmental Research (in Chinese), 8(4): 381−386. doi: 10.3969/j.issn.1006-9585.2003.04.001
    [10]
    林朝晖, 李旭, 赵彦, 等. 1998. 中国科学院大气物理研究所短期气候预测系统的改进及其对1998年全国汛期旱涝形势的预测 [J]. 气候与环境研究, 3(4): 339−348. doi: 10.3878/j.issn.1006-9585.1998.04.06

    Lin Zhaohui, Li Xu, Zhao Yan, et al. 1998. An improved short-term climate prediction system and its application to the extraseasonal prediction of rainfall anomaly in China for 1998 [J]. Climatic and Environmental Research (in Chinese), 3(4): 339−348. doi: 10.3878/j.issn.1006-9585.1998.04.06
    [11]
    林朝晖, 王坤, 肖子牛, 等. 2017. IAP AGCM 4.0模式对热带大气季节内振荡的模拟评估 [J]. 气候与环境研究, 22(2): 115−133. doi: 10.3878/j.issn.1006-9585.2016.16085

    Lin Zhaohui, Wang Kun, Xiao Ziniu, et al. 2017. The Madden-Julian oscillation simulated by the IAP AGCM 4.0 [J]. Climatic and Environmental research (in Chinese), 22(2): 115−133. doi: 10.3878/j.issn.1006-9585.2016.16085
    [12]
    刘绿柳, 杜良敏, 廖要明, 等. 2018. 基于时空统计降尺度的淮河流域夏季分月降水概率预测 [J]. 气象, 44(11): 1464−1470. doi: 10.7519/j.issn.1000-0526.2018.11.009

    Liu Lüliu, Du Liangmin, Liao Yaoming, et al. 2018. Probability prediction of monthly precipitation over Huaihe River basin in China in summer based on spatio-temporal statistical downscaling method [J]. Meteorological Monthly (in Chinese), 44(11): 1464−1470. doi: 10.7519/j.issn.1000-0526.2018.11.009
    [13]
    刘娜, 李双林. 2015. 基于时间尺度分离的中国东部夏季降水预测 [J]. 应用气象学报, 26(3): 328−337. doi: 10.11898/1001-7313.20150308

    Liu Nan, Li Shuanglin. 2015. Short-term climate prediction for summer rainfall based on time-scale decomposition [J]. Journal of Applied Meteorological Science (in Chinese), 26(3): 328−337. doi: 10.11898/1001-7313.20150308
    [14]
    刘倩, 高路, 马苗苗, 等. 2021. 辽宁大凌河流域气温和降水降尺度研究 [J]. 水利水电技术, 52(9): 16−31. doi: 10.13928/j.cnki.wrahe.2021.09.002

    Liu Qian, Gao Lu, Ma Miaomiao, et al. 2021. Downscaling of temperature and precipitation in the Daling River basin, Liaoning Province [J]. Water Resources and Hydropower Engineering (in Chinese), 52(9): 16−31. doi: 10.13928/j.cnki.wrahe.2021.09.002
    [15]
    刘智天, 郝振纯, 徐海卿, 等. 2020. 基于模式集成的松花江流域气候模拟预估 [J]. 水力发电, 46(8): 14−18. doi: 10.3969/j.issn.0559-9342.2020.08.004

    Liu Zhitian, Hao Zhenchun, Xu Haiqing, et al. 2020. Climate simulation and estimation of Songhua River basin based on model integration [J]. Water Power (in Chinese), 46(8): 14−18. doi: 10.3969/j.issn.0559-9342.2020.08.004
    [16]
    Neale R B, Richter J H, Jochum M. 2008. The impact of convection on ENSO: From a delayed oscillator to a series of events [J]. J. Climate, 21(22): 5904−5924. doi: 10.1175/2008JCLI2244.1
    [17]
    秦正坤, 林朝晖, 陈红, 等. 2011. 基于EOF/SVD的短期气候预测误差订正方法及其应用 [J]. 气象学报, 69(2): 289−296. doi: 10.11676/qxxb2011.024

    Qin Zhengkun, Lin Zhaohui, Chen Hong, et al. 2011. The bias correction methods based on the EOF/SVD for short-term climate prediction and their applications [J]. Acta Meteorologica Sinica (in Chinese), 69(2): 289−296. doi: 10.11676/qxxb2011.024
    [18]
    任宏利, 张培群, 丑纪范, 等. 2005. 中国夏季大尺度低频雨型及其转换模 [J]. 科学通报, 50(24): 2790–2799. Ren Hongli, Zhang Peiqun, Chou Jifan, et al. 2006. Large-scale low-frequency rainfall regimes and their transition modes in summertime over China[J]. Chinese Science Bulletin, 51(11): 1355–1367. doi: 10.1007/s11434-006-1355-2
    [19]
    Richter J H, Rasch P J. 2008. Effects of convective momentum transport on the atmospheric circulation in the community atmosphere model, version 3 [J]. J. Climate, 21(7): 1487−1499. doi: 10.1175/2007JCLI1789.1
    [20]
    Saha S, Moorthi S, Pan H L, et al. 2010. The NCEP climate forecast system reanalysis [J]. Bull. Amer. Meteor. Soc., 91(8): 1015−1057. doi: 10.1175/2010BAMS3001.1
    [21]
    石英, 吴婕, 徐影. 2021. 区域气候模式水平分辨率对黄淮海流域当代气候模拟的影响 [J]. 水科学进展, 32(6): 843−854. doi: 10.14042/j.cnki.32.1309.2021.06.004

    Shi Ying, Wu Jie, Xu Ying. 2021. Role of horizontal resolution in regional climate simulations over the Huang–Huai–Hai River basin [J]. Advances in Water Science (in Chinese), 32(6): 843−854. doi: 10.14042/j.cnki.32.1309.2021.06.004
    [22]
    王绍武, 叶瑾琳, 龚道溢, 等. 1998. 中国东部夏季降水型的研究 [J]. 应用气象学报, 9(S1): 65−74.

    Wang Shaowu, Ye Jinlin, Gong Daoyi, et al. 1998. Study on the patterns of summer rainfall in eastern China [J]. Quarterly Journal of Applied Meteorlolgy (in Chinese), 9(S1): 65−74.
    [23]
    王昱, 杨修群, 孙旭光, 等. 2021. 一种基于全球动力模式和SMART原理结合的统计降尺度区域季节气候预测方法 [J]. 气象科学, 41(5): 569−583. doi: 10.12306/2021jms.0049

    Wang Yu, Yang Xiuqun, Sun Xuguang, et al. 2021. A statistical downscaling method for regional seasonal climate prediction with combined global dynamical model and SMART principle [J]. Journal of the Meteorological Sciences (in Chinese), 41(5): 569−583. doi: 10.12306/2021jms.0049
    [24]
    吴洪宝, 吴蕾. 2005. 气候变率诊断和预测方法[M]. 北京: 气象出版社, 1–45.

    Wu Hongbao, Wu Lei. 2005. Methods for Diagnosing and Forecasting Climate Variability (in Chinese) [M]. Beijing: China Meteorological Press, 1–45.
    [25]
    吴佳, 高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比 [J]. 地球物理学报, 56(4): 1102−1111. doi: 10.6038/cjg20130406

    Wu Jia, Gao Xuejie. 2013. A gridded daily observation dataset over China region and comparison with the other datasets [J]. Chinese Journal of Geophysics (in Chinese), 56(4): 1102−1111. doi: 10.6038/cjg20130406
    [26]
    晏正滨, 林朝晖, 张贺. 2015. 大气环流模式IAP AGCM4.0对东亚高空副热带西风急流的模拟及偏差原因分析 [J]. 气候与环境研究, 20(4): 393−410. doi: 10.3878/j.issn.1006-9585.2015.14095

    Yan Zhengbin, Lin Zhaohui, Zhang He. 2015. Evaluation and bias analysis for the performance of IAP AGCM4.0 in simulating the East Asian subtropical westerly jet [J]. Climatic and Environmental Research (in Chinese), 20(4): 393−410. doi: 10.3878/j.issn.1006-9585.2015.14095
    [27]
    杨文发, 王乐, 张俊. 2021. 流域多尺度水文预报应用进展及适用性探讨 [J]. 人民长江, 52(10): 84−94. doi: 10.16232/j.cnki.1001-4179.2021.10.013

    Yang Wenfa, Wang Le, Zhang Jun. 2021. Application progress and applicability of multi-scale watershed hydrological forecasting [J]. Yangtze River (in Chinese), 52(10): 84−94. doi: 10.16232/j.cnki.1001-4179.2021.10.013
    [28]
    Yu Y, Lin Z H, Qin Z K. 2018. Improved EOF-based bias correction method for seasonal forecasts and its application in IAP AGCM4.1 [J]. Atmos. Oceanic Sci. Lett., 11(6): 499−508. doi: 10.1080/16742834.2018.1529532
    [29]
    曾庆存, 袁重光, 王万秋, 等. 1990. 跨季度气候距平数值预测试验 [J]. 大气科学, 14(1): 10−25. doi: 10.3878/j.issn.1006-9895.1990.01.03

    Zeng Qingcun, Yuan Chongguang, Wang Wanqiu, et al. 1990. Experiments in numerical extraseasonal prediction of climate anomalies [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 14(1): 10−25. doi: 10.3878/j.issn.1006-9895.1990.01.03
    [30]
    张贺, 林朝晖, 曾庆存. 2011. 大气环流模式中动力框架与物理过程的相互响应 [J]. 气候与环境研究, 16(1): 15−30. doi: 10.3878/j.issn.1006-9585.2011.01.02

    Zhang He, Lin Zhaohui, Zeng Qingcun. 2011. The mutual response between dynamical core and physical parameterizations in atmospheric general circulation models [J]. Climatic and Environmental Research (in Chinese), 16(1): 15−30. doi: 10.3878/j.issn.1006-9585.2011.01.02
    [31]
    张建云, 王国庆, 金君良, 等. 2020. 1956~2018年中国江河径流演变及其变化特征 [J]. 水科学进展, 31(2): 153−161. doi: 10.14042/j.cnki.32.1309.2020.02.001

    Zhang Jianyun, Wang Guoqing, Jin Junliang, et al. 2020. Evolution and variation characteristics of the recorded runoff for the major rivers in China during 1956−2018 [J]. Advances in Water Science (in Chinese), 31(2): 153−161. doi: 10.14042/j.cnki.32.1309.2020.02.001
    [32]
    Zheng F, Zhu J. 2010. Coupled assimilation for an intermediated coupled ENSO prediction model [J]. Ocean Dyn., 60(5): 1061−1073. doi: 10.1007/s10236-010-0307-1
    [33]
    周文翀, 韩振宇. 2018. CMIP5全球气候模式对中国黄河流域气候模拟能力的评估 [J]. 气象与环境学报, 34(6): 42−55. doi: 10.3969/j.issn.1673-503X.2018.06.005

    Zhou Wenchong, Han Zhenyu. 2018. Assessing CMIP5 climate simulations and objective selection of models over the Yellow River basin [J]. Journal of Meteorology and Environment (in Chinese), 34(6): 42−55. doi: 10.3969/j.issn.1673-503X.2018.06.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (110) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return