Advanced Search

2007 Vol. 24, No. 3

Display Method:
article
Time-Frequency Characteristics of the Relationships Between Tropical Indo-Pacific SSTs
Song YANG, DING Xiaoli, ZHENG Dawei, Soo-Hyun YOO
2007, 24(3): 343-359. doi: 10.1007/s00376-007-0343-z
Abstract:
In this study, several advanced analysis methods are applied to understand the relationships between the Nino-3.4 sea surface temperatures (SST) and the SSTs related to the tropical Indian Ocean Dipole (IOD). By analyzing a long data record, the authors focus on the time-frequency characteristics of these relationships, and of the structure of IOD. They also focus on the seasonal dependence of those characteristics in both time and frequency domains. Among the Nino-3.4 SST, IOD, and SSTs over the tropical western Indian Ocean (WIO) and eastern Indian Ocean (EIO), the WIO SST has the strongest annual and semiannual oscillations. While the Nino-3.4 SST has large inter-annual variability that is only second to its annual variability, the IOD is characterized by the largest semiannual oscillation, which is even stronger than its annual oscillation. The IOD is strongly and stably related to the EIO SST in a wide range of frequency bands and in all seasons. However, it is less significantly related to the WIO SST in the boreal winter and spring. There exists a generally weak and unstable relationship between the WIO and EIO SSTs, especially in the biennial and higher frequency bands. The relationship is especially weak in summer and fall, when IOD is apparent, but appears highly positive in winter and spring, when the IOD is unimportantly weak and even disappears. This feature reflects a caution in the definition and application of IOD. The Nino-3.4 SST has a strong positive relationship with the WIO SST in all seasons, mainly in the biennial and longer frequency bands. However, it shows no significant relationship with the EIO SST in summer and fall, and with IOD in winter and spring.
Sensitivity Study of the South China Sea Summer Monsoon in 1998 to Different Cumulus arameterization Schemes
LIU Yanju, DING Yihui
2007, 24(3): 360-376. doi: 10.1007/s00376-007-0360-y
Abstract:
In this study, the improved high-resolution regional climate model of the China National Climate Center (RegCM\_NCC) is used to examine the sensitivity of the simulated circulation and rainfall during the South China Sea summer monsoon (SCSSM) period during 1998 in an effort to compare to other cumulus parameterization schemes. The investigation has indicated that the model is capable of simulating the seasonal march of the SCSSM and that the results were very sensitive to the choice of cumulus parameterization schemes. It seems that the Kuo cumulus parameterization scheme simulates the process of the SCSSM onset reasonably well, which can reproduce the onset timing and dramatic changes before and after the onset, especially the upper- and lower-level wind-fields. However, there are still some discrepancies between the simulations and observations. For example, the model can not completely simulate the intensity of the rainfall or the location of the western Pacific subtropical high as well as the feature of the rapid northward propagation of seasonal rain belt.In this study, the improved high-resolution regional climate model of the China National Climate Center (RegCM\_NCC) is used to examine the sensitivity of the simulated circulation and rainfall during the South China Sea summer monsoon (SCSSM) period during 1998 in an effort to compare to other cumulus parameterization schemes. The investigation has indicated that the model is capable of simulating the seasonal march of the SCSSM and that the results were very sensitive to the choice of cumulus parameterization schemes. It seems that the Kuo cumulus parameterization scheme simulates the process of the SCSSM onset reasonably well, which can reproduce the onset timing and dramatic changes before and after the onset, especially the upper- and lower-level wind-fields. However, there are still some discrepancies between the simulations and observations. For example, the model can not completely simulate the intensity of the rainfall or the location of the western Pacific subtropical high as well as the feature of the rapid northward propagation of seasonal rain belt.
Impacts of SST and SST Anomalies on Low-Frequency Oscillation in the Tropical Atmosphere
HE Jinhai, YU Jingjing, SHEN Xinyong
2007, 24(3): 377-382. doi: 10.1007/s00376-007-0377-2
Abstract:
Considering the multiscale character of LFO (low-frequency oscillation) in the tropical atmosphere, the effects of SST on LFO in the tropical atmosphere are discussed by using an absolute ageostrophic, baroclinic model. Here, SST effects include sea surface heating and forcing of SST anomalies (SSTAs). Studies of the influences of sea surface heating on LFO frequency and stability show that sea surface heating can slow the speed of waves and lower their frequency when SST is comparatively low; while higher SST leads to unstable waves and less periods of LFO. Since the impact of a SSTA on ultra-long waves is more evident than that on kilometer-scale waves, long-wave approximation is used when we continue to study the effect of SSTAs. Results indicate that SSTAs can lead to a longer period of LFO, and make waves unstable. In other words, positive (negative) SSTAs can make waves decay (grow).
Impacts of XBT, TAO, Altimetry and ARGO Observations on the Tropical Pacific Ocean Data ssimilationImpacts of XBT, TAO, Altimetry and ARGO Observations on the Tropical Pacific Ocean Data Assimilation
YAN Changxiang, ZHU Jiang, ZHOU Guangqing
2007, 24(3): 383-398. doi: 10.1007/s00376-007-0383-4
Abstract:
This study aims at assessing the relative impacts of four major components of the tropical Pacific Ocean observing system on assimilation of temperature and salinity fields. Observations were collected over a period between January 2001 through June 2003 including temperature data from the expendable bathythermographs (XBT), thermistor data from the Tropical Ocean Global Atmosphere Tropical Atmosphere-Ocean (TOGA-TAO) mooring array, sea level anomalies from the Topex/Poseidon and Jason-1 altimetry (T/P-J), and temperature and salinity profiles from the Array for Real-time Geostrophic Oceanography (ARGO) floats. An efficient three-dimensional variational analysis-based method was introduced to assimilate the above data into the tropical-Pacific circulation model. To evaluate the impact of the individual component of the observing system, four observation system experiments were carried out. The experiment that assimilated all four components of the observing system was taken as the reference. The other three experiments were implemented by withholding one of the four components. Results show that the spatial distribution of the data influences its relative contribution. XBT observations produce the most distinguished effects on temperature analyses in the off-equatorial region due to the large amount of measurements and high quality. Similarly, the impact of TAO is dominant in the equatorial region due to the focus of the spatial distribution. The Topex/Poseidon-Jason-1 can be highly complementary where the XBT and TAO observations are sparse. The contribution of XBT or TAO on the assimilated salinity is made by the model dynamics because no salinity observations from them are assimilated. Therefore, T/P-J, as a main source for providing salinity data, has been shown to have greater impacts than either XBT or TAO on the salinity analysis. Although ARGO includes the subsurface observations, the relatively smaller number of observation makes it have the smallest contribution to the assimilation system.
Analysis of a Group of Weak Small-Scale Vortexes in the Planetary Boundary Layer in the Mei-yu Front
ZHAI Guoqing, ZHOU Lingli, WANG Zhi
2007, 24(3): 399-408. doi: 10.1007/s00376-007-0399-9
Abstract:
A mei-yu front process in the lower reaches of the Yangtze River on 23 June 1999 was simulated by using the fifth-generation Pennsylvania State University-NCAR (PSU/NCAR) Mesoscale Model (MM5) with FDDA (Four Dimension Data Assimilation). The analysis shows that seven weak small mesoscale vortexes of tens of kilometers, correspondent to surface low trough or mesoscale centers, in the planetary boundary layer (PBL) in the mei-yu front were heavily responsible for the heavy rainfall. Sometimes, several weak small-scale vortexes in the PBL could form a vortex group, some of which would weaken locally, and some would develop to be a meso-$\alpha$-scale low vortex through combination. The initial dynamical triggering mechanism was related to two strong currents: one was the northeast flow in the PBL at the rear of the mei-yu front, the vortexes occurred exactly at the side of the northeast flow; and the other was the strong southwest low-level jet (LLJ) in front of the Mei-yu front, which moved to the upper of the vortexes. Consequently, there were notable horizontal and vertical wind shears to form positive vorticity in the center of the southwest LLJ. The development of mesoscale convergence in the PBL and divergence above, as well as the vertical positive vorticity column, were related to the small wind column above the nose-shaped velocity contours of the northeast flow embedding southwestward in the PBL, which intensified the horizontal wind shear and the positive vorticity column above the vortexes, baroclinicity and instability.
Moisture Analysis of a Squall Line Case Based on Precipitable Water Vapor Data from a Ground-Based GPS Network in the Yangtze River Delta
DING Jincai, YANG Yinming, YE Qixin, HUANG Yan, MA Xiaoxing, MA Leiming, Y. R. GUO
2007, 24(3): 409-420. doi: 10.1007/s00376-007-0409-y
Abstract:
A squall line swept eastward across the area of the Yangtze River Delta and produced gusty winds and heavy rain from the afternoon to the evening of 24 August 2002. In this paper, the roles of moisture in the genesis and development of the squall line were studied. Based on the precipitable water vapor (PWV) data from a ground-based GPS network over the Yangtze River Delta in China, plus data from a Pennsylvania State University/National Atmospheric Center (PSU/NCAR) mesoscale model (MM5) simulation, initialized by three-dimensional variational (3D-VAR) assimilation of the PWV data, some interesting features are revealed. During the 12 hours prior to the squall line arriving in the Shanghai area, a significant increase in PWV indicates a favorable moist environment for a squall line to develop. The vertical profile of the moisture illustrates that it mainly increased in the middle levels of the troposphere, and not at the surface. Temporal variation in PWV is a better precursor for squall line development than other surface meteorological parameters. The characteristics of the horizontal distribution of PWV not only indicated a favorable moist environment, but also evolved a cyclonic wind field for a squall line genesis and development. The ``+2 mm" contours of the three-hourly PWV variation can be used successfully to predict the location of the squall line two hours later.
A Comparison of Two Canopy Radiative Models in Land Surface ProcessesA Comparison of Two Canopy adiative Models in Land Surface Processes
DAI Qiudan, SUN Shufen
2007, 24(3): 421-434. doi: 10.1007/s00376-007-0421-2
Abstract:
This paper compares the predictions by two radiative transfer models---the two-stream approximation model and the generalized layered model (developed by the authors) in land surface processes---for different canopies under direct or diffuse radiation conditions. The comparison indicates that there are significant differences between the two models, especially in the near infrared (NIR) band. Results of canopy reflectance from the two-stream model are larger than those from the generalized model. However, results of canopy absorptance from the two-stream model are larger in some cases and smaller in others compared to those from the generalized model, depending on the cases involved. In the visible (VIS) band, canopy reflectance is smaller and canopy absorptance larger from the two-stream model compared to the generalized model when the Leaf Area Index (LAI) is low and soil reflectance is high. In cases of canopies with vertical leaf angles, the differences of reflectance and absorptance in the VIS and NIR bands between the two models are especially large. Two commonly occurring cases, with which the two-stream model cannot deal accurately, are also investigated. One is for a canopy with different adaxial and abaxial leaf optical properties; and the other is for incident sky diffuse radiation with a non-uniform distribution. Comparison of the generalized model within the same canopy for both uniform and non-uniform incident diffuse radiation inputs shows smaller differences in general. However, there is a measurable difference between these radiation inputs for a canopy with high leaf angle. This indicates that the application of the two-stream model to a canopy with different adaxial and abaxial leaf optical properties will introduce non-negligible errors.
State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics \mbox{\rm (LASG)}, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
ZHONG Ke, DONG Peiming, ZHAO Sixiong, CAI Qifa, LAN Weiren
2007, 24(3): 435-448. doi: 10.1007/s00376-007-0435-9
Abstract:
An adjoint sensitivity analysis of one mesoscale low on the mei-yu Front is presented in this paper. The sensitivity gradient of simulation error dry energy with respect to initial analysis is calculated. And after verifying the ability of a tangent linear and adjoint model to describe small perturbations in the nonlinear model, the sensitivity gradient analysis is implemented in detail. The sensitivity gradient with respect to different physical fields are not uniform in intensity, simulation error is most sensitive to the vapor mixed ratio. The localization and consistency are obvious characters of horizontal distribution of the sensitivity gradient, which is useful for the practical implementation of adaptive observation. The sensitivity region tilts to the northwest with height increasing; the singular vector calculation proves that this tilting characterizes a quick-growing structure, which denotes that using the leading singular vectors to decide the adaptive observation region is proper. When connected with simulation of a mesoscale low on the mei-yu Front, the sensitivity gradient has the following physical characters: the obvious sensitive region is mesoscale, concentrated in the middle-upper troposphere, and locates around the key system; and the sensitivity gradient of different physical fields correlates dynamically.
Errors and Correction of Precipitation Measurements in China
REN Zhihua, LI Mingqin
2007, 24(3): 449-458. doi: 10.1007/s00376-007-0449-3
Abstract:
In order to discover the range of various errors in Chinese precipitation measurements and seek a correction method, 30 precipitation evaluation stations were set up countrywide before 1993. All the stations are reference stations in China. To seek a correction method for wind-induced error, a precipitation correction instrument called the ``horizontal precipitation gauge" was devised beforehand. Field intercomparison observations regarding 29,000 precipitation events have been conducted using one pit gauge, two elevated operational gauges and one horizontal gauge at the above 30 stations. The range of precipitation measurement errors in China is obtained by analysis of intercomparison measurement results. The distribution of random errors and systematic errors in precipitation measurements are studied in this paper. A correction method, especially for wind-induced errors, is developed. The results prove that a correlation of power function exists between the precipitation amount caught by the horizontal gauge and the absolute difference of observations implemented by the operational gauge and pit gauge. The correlation coefficient is 0.99. For operational observations, precipitation correction can be carried out only by parallel observation with a horizontal precipitation gauge. The precipitation accuracy after correction approaches that of the pit gauge. The correction method developed is simple and feasible.
Changes in Seasonal Patterns of Temperature and Precipitation in China During 1971--2000
SONG Lianchun, A. J. CANNON, P. H. WHITFIELD
2007, 24(3): 459-473. doi: 10.1007/s00376-007-0459-1
Abstract:
Many studies have shown evidence for significant changes in surface climate in different regions of the world and during different seasons over the past 100 years. Based on daily temperature and precipitation data from 720 climate stations in China, cluster analysis was used to identify regions in China that have experienced similar changes in the seasonal cycle of temperature and precipitation during the 1971--2000 climate normal period. Differences in 11-day averages of daily mean temperature and total precipitation between the first (1971--1985) and second (1986--2000) halves of the record were analyzed using the Mann-Whitney U test and the global $k$-means clustering algorithm. Results show that most parts of China experienced significant increases in temperature between the two periods, especially in winter, although some of this warming may be attributable to the urban heat island effect in large cities. Most of western China experienced more precipitation in 1986--2000, while precipitation decreased in the Yellow River valley. Changes in the summer monsoon were also evident, with decreases in precipitation during the onset and decay phases, and increases during the wettest period.
A Study of Influencing Systems and Moisture Budget in a Heavy Rainfall in Low Latitude Plateau in China during Early Summer
DONG Haiping, ZHAO Sixiong, ZENG Qingcun
2007, 24(3): 485-502. doi: 10.1007/s00376-007-0485-z
Abstract:
Analysis of a heavy rainfall in a lower latitude plateau and characteristics of water vapor transportation have been conducted by using conventional data and denser surface data. The results show: (1) the heavy rainfall was caused by a series of mesoscale systems under favorable large-scale conditions when the warm moister air and cold air interacted with each other. At the same time, the coupling between the upper- and lower-level jets was revealed. It is also found that there exists some different characteristics among the main influencing systems of heavy rainfalls in Yunnan, such as the Indian-Myanmar trough and the path of the cold air, compared with those in East and South China. (2) The interaction between mesoscale convergence lines near the ground may be a possible triggering mechanism for the occurrence of mesoscale systems, and the dynamical and thermal dynamical structure of the mesoscale systems was very obvious. The convergence lines may relate closely to the terrain of Yunnan, China. (3) The computation of the water vapor budget reveals that the primary source of water vapor supply for heavy rainfall was in the Bay of Bengal. In this case, the water vapor could be transported into Yunnan even though the amount of water vapor was less than that in the lower troposphere in East and South China. In addition, the analysis for three-dimensional air parcel trajectories better revealed and described the source location and the transportation of water vapor to Yunnan.
Prediction of Monthly Mean Surface Air Temperature in a Region of China
Jeong-Hyeong LEE, Keon-Tae SOHN
2007, 24(3): 503-508. doi: 10.1007/s00376-007-0503-1
Abstract:
In conventional time series analysis, a process is often modeled as three additive components: linear trend, seasonal effect, and random noise. In this paper, we perform an analysis of surface air temperature in a region of China using a decomposition method in time series analysis. Applications to the National Centers for Environmental Prediction/the National Center for Atmospheric Research (NCEP/NCAR) Collaborative Reanalysis data in this region of China are discussed. The main finding was that the surface air temperature trend estimated for January 1948 to February 2006 was not statistically significant at 0.5904oC (100 yr)-1. Forecasting aspects are also considered.
Variational Assimilation of GPS Precipitable Water Vapor and Hourly Rainfall Observations for a Meso- Scale Heavy Precipitation Event During the 2002 Mei-Yu Season
ZHANG Meng, NI Yunqi, ZHANG Fuqing
2007, 24(3): 509-526. doi: 10.1007/s00376-007-0509-8
Abstract:
Recent advances in Global Positioning System (GPS) remote sensing technology allow for a direct estimation of the precipitable water vapor (PWV) from delayed signals transmitted by GPS satellites, which can be assimilated into numerical models with four-dimensional variational (4DVAR) data assimilation. A mesoscale model and its 4DVAR system are used to access the impacts of assimilating GPS-PWV and hourly rainfall observations on the short-range prediction of a heavy rainfall event on 20 June 2002. The heavy precipitation was induced by a sequence of meso-beta-scale convective systems (MCS) along the mei-yu front in China. The experiments with GPS-PWV assimilation successfully simulated the evolution of the observed MCS cluster and also eliminated the erroneous rainfall systems found in the experiment without 4DVAR assimilation. Experiments with hourly rainfall assimilation performed similarly both on the prediction of MCS initiation and the elimination of erroneous systems, however the MCS dissipated much sooner than it did in observations. It is found that the assimilation-induced moisture perturbation and mesoscale low-level jet are helpful for the MCS generation and development. It is also discovered that spurious gravity waves may post serious limitations for the current 4DVAR algorithm, which would degrade the assimilation efficiency, especially for rainfall data. Sensitivity experiments with different observations, assimilation windows and observation weightings suggest that assimilating GPS-PWV can be quite effective, even with the assimilation window as short as 1 h. On the other hand, assimilating rainfall observations requires extreme cautions on the selection of observation weightings and the control of spurious gravity waves.
The Influence of Land Surface Changes on Regional Climate in Northwest China
XU Xingkui, ZHANG Feng, Jason K. LEVY
2007, 24(3): 527-537. doi: 10.1007/s00376-007-0527-6
Abstract:
Land surface changes effect the regional climate due to the complex coupling of land-atmosphere interactions. From 1995 to 2000, a decrease in the vegetation density and an increase in ground-level thermodynamic activity has been documented by multiple data sources in Northwest China, including meteorological, re-analysis from European Centre for Medium-Range Weather Forecasts (ECMWF), National Oceanic and Atmospheric Administration's (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and TIROS Operational Vertical Sounder (TOVS) satellite remote sensing data. As the ground-level thermodynamic activity increases, humid air from the surrounding regions converge toward desert (and semi-desert) regions, causing areas with high vegetation cover to become gradually more arid. Furthermore, land surface changes in Northwest China are responsible for a decrease in total cloud cover, a decline in the fraction of low and middle clouds, an increase in high cloud cover (due to thermodynamic activity) and other regional climatic adaptations. It is proposed that, beginning in 1995, these cloud cover changes contributed to a ``greenhouse" effect, leading to the rapid air temperature increases and other regional climate impacts that have been observed over Northwest China.