Advanced Search

2024 Vol. 41, No. 2

2024-2 Contents
2024, 41(2): 1-1.
Abstract:
Editorial Notes
Preface to the Special Issue on Causes, Impacts, and Predictability of Droughts for the Past, Present, and Future
Tianbao ZHAO, Aiguo DAI, Jianping HUANG, Lixia ZHANG
2024, 41(2): 191-192. doi: 10.1007/s00376-023-3017-6
Abstract:
Original Paper
Assessing the Performance of CMIP6 Models in Simulating Droughts across Global Drylands
Xiaojing YU, Lixia ZHANG, Tianjun ZHOU, Jianghua ZHENG
2024, 41(2): 193-208. doi: 10.1007/s00376-023-2278-4
Abstract:
Both the attribution of historical change and future projections of droughts rely heavily on climate modeling. However, reasonable drought simulations have remained a challenge, and the related performances of the current state-of-the-art Coupled Model Intercomparison Project phase 6 (CMIP6) models remain unknown. Here, both the strengths and weaknesses of CMIP6 models in simulating droughts and corresponding hydrothermal conditions in drylands are assessed. While the general patterns of simulated meteorological elements in drylands resemble the observations, the annual precipitation is overestimated by ~33% (with a model spread of 2.3%–77.2%), along with an underestimation of potential evapotranspiration (PET) by ~32% (17.5%–47.2%). The water deficit condition, measured by the difference between precipitation and PET, is 50% (29.1%–71.7%) weaker than observations. The CMIP6 models show weaknesses in capturing the climate mean drought characteristics in drylands, particularly with the occurrence and duration largely underestimated in the hyperarid Afro-Asian areas. Nonetheless, the drought-associated meteorological anomalies, including reduced precipitation, warmer temperatures, higher evaporative demand, and increased water deficit conditions, are reasonably reproduced. The simulated magnitude of precipitation (water deficit) associated with dryland droughts is overestimated by 28% (24%) compared to observations. The observed increasing trends in drought fractional area, occurrence, and corresponding meteorological anomalies during 1980–2014 are reasonably reproduced. Still, the increase in drought characteristics, associated precipitation and water deficit are obviously underestimated after the late 1990s, especially for mild and moderate droughts, indicative of a weaker response of dryland drought changes to global warming in CMIP6 models. Our results suggest that it is imperative to employ bias correction approaches in drought-related studies over drylands by using CMIP6 outputs.
Global Change in Agricultural Flash Drought over the 21st Century
Emily BLACK
2024, 41(2): 209-220. doi: 10.1007/s00376-023-2366-5
Abstract:
Agricultural flash droughts are high-impact phenomena, characterized by rapid soil moisture dry down. The ensuing dry conditions can persist for weeks to months, with detrimental effects on natural ecosystems and crop cultivation. Increases in the frequency of these rare events in a future warmer climate would have significant societal impact. This study uses an ensemble of 10 Coupled Model Intercomparison Project (CMIP) models to investigate the projected change in agricultural flash drought during the 21st century. Comparison across geographical regions and climatic zones indicates that individual events are preceded by anomalously low relative humidity and precipitation, with long-term trends governed by changes in temperature, relative humidity, and soil moisture. As a result of these processes, the frequency of both upper-level and root-zone flash drought is projected to more than double in the mid- and high latitudes over the 21st century, with hot spots developing in the temperate regions of Europe, and humid regions of South America, Europe, and southern Africa.
Asymmetric Drying and Wetting Trends in Eastern and Western China
Wen WU, Fei JI, Shujuan HU, Yongli HE
2024, 41(2): 221-232. doi: 10.1007/s00376-022-2216-x
Abstract:
As an important factor that directly affects agricultural production, the social economy, and policy implementation, observed changes in dry/wet conditions have become a matter of widespread concern. However, previous research has mainly focused on the long-term linear changes of dry/wet conditions, while the detection and evolution of the non-linear trends related to dry/wet changes have received less attention. The non-linear trends of the annual aridity index, obtained by the Ensemble Empirical Mode Decomposition (EEMD) method, reveal that changes in dry/wet conditions in China are asymmetric and can be characterized by contrasting features in both time and space in China. Spatially, most areas in western China have experienced transitions from drying to wetting, while opposite changes have occurred in most areas of eastern China. Temporally, the transitions occurred earlier in western China compared to eastern China. Research into the asymmetric spatial characteristics of dry/wet conditions compensates for the inadequacies of previous studies, which focused solely on temporal evolution; at the same time, it remedies the inadequacies of traditional research on linear trends over centennial timescales. Analyzing the non-linear trend also provides for a more comprehensive understanding of the drying/wetting changes in China.
Anthropogenic Influence on Decadal Changes in Concurrent Hot and Dry Events over China around the Mid-1990s
Qin SU, Buwen DONG, Fangxing TIAN, Nicholas P. KLINGAMAN
2024, 41(2): 233-246. doi: 10.1007/s00376-023-2319-z
Abstract:
The frequency and duration of observed concurrent hot and dry events (HDEs) over China during the growing season (April–September) exhibit significant decadal changes across the mid-1990s. These changes are characterized by increases in HDE frequency and duration over most of China, with relatively large increases over southeastern China (SEC), northern China (NC), and northeastern China (NEC). The frequency of HDEs averaged over China in the present day (PD, 1994–2011) is double that in the early period (EP, 1964–81); the duration of HDEs increases by 60%. Climate experiments with the Met Office Unified Model (MetUM-GOML2) are used to estimate the contributions of anthropogenic forcing to HDE decadal changes over China. Anthropogenic forcing changes can explain 60%–70% of the observed decadal changes, suggesting an important anthropogenic influence on HDE changes over China across the mid-1990s. Single-forcing experiments indicate that the increase in greenhouse gas (GHG) concentrations dominates the simulated decadal changes, increasing the frequency and duration of HDEs throughout China. The change in anthropogenic aerosol (AA) emissions significantly decreases the frequency and duration of HDEs over SEC and NC, but the magnitude of the decrease is much smaller than the increase induced by GHGs. The changes in HDEs in response to anthropogenic forcing are mainly due to the response of climatological mean surface air temperatures. The contributions from changes in variability and changes in climatological mean soil moisture and evapotranspiration are relatively small. The physical processes associated with the response of HDEs to GHG and AA changes are also revealed.
Characterization and Propagation of Historical and Projected Droughts in the Umatilla River Basin, Oregon, USA
Sudip GAUTAM, Alok SAMANTARAY, Meghna BABBAR-SEBENS, Meenu RAMADAS
2024, 41(2): 247-262. doi: 10.1007/s00376-023-2302-8
Abstract:
Climate change is expected to have long-term impacts on drought and wildfire risks in Oregon as summers continue to become warmer and drier. This paper investigates the projected changes in drought characteristics and drought propagation in the Umatilla River Basin in northeastern Oregon for mid-century (2030–2059) and late-century (2070–2099) climate scenarios. Drought characteristics for projected climates were determined using downscaled CMIP5 climate datasets from ten climate models and Soil and Water Assessment Tool to simulate effects on hydrologic processes. Short-term (three months) drought characteristics (frequency, duration, and severity) were analyzed using four drought indices, including the Standardized Precipitation Index (SPI-3), Standardized Precipitation-Evapotranspiration Index (SPEI-3), Standardized Streamflow Index (SSI-3), and the Standardized Soil Moisture Index (SSMI-3). Results indicate that short-term meteorological droughts are projected to become more prevalent, with up to a 20% increase in the frequency of SPI-3 drought events. Short-term hydrological droughts are projected to become more frequent (average increase of 11% in frequency of SSI-3 drought events), more severe, and longer in duration (average increase of 8% for short-term droughts). Similarly, short-term agricultural droughts are projected to become more frequent (average increase of 28% in frequency of SSMI-3 drought events) but slightly shorter in duration (average decrease of 4%) in the future. Historically, drought propagation time from meteorological to hydrological drought is shorter than from meteorological to agricultural drought in most sub-basins. For the projected climate scenarios, the decrease in drought propagation time will likely stress the timing and capacity of water supply in the basin for irrigation and other uses.
Assimilation of GOES-R Geostationary Lightning Mapper Flash Extent Density Data in GSI 3DVar, EnKF, and Hybrid En3DVar for the Analysis and Short-Term Forecast of a Supercell Storm Case
Rong KONG, Ming XUE, Edward R. MANSELL, Chengsi LIU, Alexandre O. FIERRO
2024, 41(2): 263-277. doi: 10.1007/s00376-023-2340-2
Abstract:
Capabilities to assimilate Geostationary Operational Environmental Satellite “R-series” (GOES-R) Geostationary Lightning Mapper (GLM) flash extent density (FED) data within the operational Gridpoint Statistical Interpolation ensemble Kalman filter (GSI-EnKF) framework were previously developed and tested with a mesoscale convective system (MCS) case. In this study, such capabilities are further developed to assimilate GOES GLM FED data within the GSI ensemble-variational (EnVar) hybrid data assimilation (DA) framework. The results of assimilating the GLM FED data using 3DVar, and pure En3DVar (PEn3DVar, using 100% ensemble covariance and no static covariance) are compared with those of EnKF/DfEnKF for a supercell storm case. The focus of this study is to validate the correctness and evaluate the performance of the new implementation rather than comparing the performance of FED DA among different DA schemes. Only the results of 3DVar and pEn3DVar are examined and compared with EnKF/DfEnKF. Assimilation of a single FED observation shows that the magnitude and horizontal extent of the analysis increments from PEn3DVar are generally larger than from EnKF, which is mainly caused by using different localization strategies in EnFK/DfEnKF and PEn3DVar as well as the integration limits of the graupel mass in the observation operator. Overall, the forecast performance of PEn3DVar is comparable to EnKF/DfEnKF, suggesting correct implementation.
Two-Stream Approximation to the Radiative Transfer Equation: A New Improvement and Comparative Accuracy with Existing Methods
F. Momo TEMGOUA, L. Akana NGUIMDO, D. NJOMO
2024, 41(2): 278-292. doi: 10.1007/s00376-023-2257-9
Abstract:
Mathematical modeling of the interaction between solar radiation and the Earth’s atmosphere is formalized by the radiative transfer equation (RTE), whose resolution calls for two-stream approximations among other methods. This paper proposes a new two-stream approximation of the RTE with the development of the phase function and the intensity into a third-order series of Legendre polynomials. This new approach, which adds one more term in the expression of the intensity and the phase function, allows in the conditions of a plane parallel atmosphere a new mathematical formulation of γ parameters. It is then compared to the Eddington, Hemispheric Constant, Quadrature, Combined Delta Function and Modified Eddington, and second-order approximation methods with reference to the Discrete Ordinate (Disort) method (\begin{document}$ \delta $\end{document}–128 streams), considered as the most precise. This work also determines the conversion function of the proposed New Method using the fundamental definition of two-stream approximation (F-TSA) developed in a previous work. Notably, New Method has generally better precision compared to the second-order approximation and Hemispheric Constant methods. Compared to the Quadrature and Eddington methods, New Method shows very good precision for wide domains of the zenith angle \begin{document}$ {\mathrm{\mu }}_{0} $\end{document}, but tends to deviate from the Disort method with the zenith angle, especially for high values ​​of optical thickness. In spite of this divergence in reflectance for high values of optical thickness, very strong correlation with the Disort method (\begin{document}$ R\approx 1 $\end{document}) was obtained for most cases of optical thickness in this study. An analysis of the Legendre polynomial series for simple functions shows that the high precision is due to the fact that the approximated functions ameliorate the accuracy when the order of approximation increases, although it has been proven that there is a limit order depending on the function from which the precision is lost. This observation indicates that increasing the order of approximation of the phase function of the RTE leads to a better precision in flux calculations. However, this approach may be limited to a certain order that has not been studied in this paper.
Impacts of Ice-Ocean Stress on the Subpolar Southern Ocean: Role of the Ocean Surface Current
Yang WU, Zhaomin WANG, Chengyan LIU, Liangjun YAN
2024, 41(2): 293-309. doi: 10.1007/s00376-023-3031-8
Abstract:
The mechanical influences involved in the interaction between the Antarctic sea ice and ocean surface current (OSC) on the subpolar Southern Ocean have been systematically investigated for the first time by conducting two simulations that include and exclude the OSC in the calculation of the ice-ocean stress (IOS), using an eddy-permitting coupled ocean-sea ice global model. By comparing the results of these two experiments, significant increases of 5%, 27%, and 24%, were found in the subpolar Southern Ocean when excluding the OSC in the IOS calculation for the ocean surface stress, upwelling, and downwelling, respectively. Excluding the OSC in the IOS calculation also visibly strengthens the total mechanical energy input to the OSC by about 16%, and increases the eddy kinetic energy and mean kinetic energy by about 38% and 12%, respectively. Moreover, the response of the meridional overturning circulation in the Southern Ocean yields respective increases of about 16% and 15% for the upper and lower branches; and the subpolar gyres are also found to considerably intensify, by about 12%, 11%, and 11% in the Weddell Gyre, the Ross Gyre, and the Australian-Antarctic Gyre, respectively. The strengthened ocean circulations and Ekman pumping result in a warmer sea surface temperature (SST), and hence an incremental surface heat loss. The increased sea ice drift and warm SST lead to an expansion of the sea ice area and a reduction of sea ice volume. These results emphasize the importance of OSCs in the air−sea−ice interactions on the global ocean circulations and the mass balance of Antarctic ice shelves, and this component may become more significant as the rapid change of Antarctic sea ice.
The Spatiotemporal Distribution Characteristics of Cloud Types and Phases in the Arctic Based on CloudSat and CALIPSO Cloud Classification Products
Yue SUN, Huiling YANG, Hui XIAO, Liang FENG, Wei CHENG, Libo ZHOU, Weixi SHU, Jingzhe SUN
2024, 41(2): 310-324. doi: 10.1007/s00376-023-2231-6
Abstract:
The cloud type product 2B-CLDCLASS-LIDAR based on CloudSat and CALIPSO from June 2006 to May 2017 is used to examine the temporal and spatial distribution characteristics and interannual variability of eight cloud types (high cloud, altostratus, altocumulus, stratus, stratocumulus, cumulus, nimbostratus, and deep convection) and three phases (ice, mixed, and water) in the Arctic. Possible reasons for the observed interannual variability are also discussed. The main conclusions are as follows: (1) More water clouds occur on the Atlantic side, and more ice clouds occur over continents. (2) The average spatial and seasonal distributions of cloud types show three patterns: high clouds and most cumuliform clouds are concentrated in low-latitude locations and peak in summer; altostratus and nimbostratus are concentrated over and around continents and are less abundant in summer; stratocumulus and stratus are concentrated near the inner Arctic and peak during spring and autumn. (3) Regional averaged interannual frequencies of ice clouds and altostratus clouds significantly decrease, while those of water clouds, altocumulus, and cumulus clouds increase significantly. (4) Significant features of the linear trends of cloud frequencies are mainly located over ocean areas. (5) The monthly water cloud frequency anomalies are positively correlated with air temperature in most of the troposphere, while those for ice clouds are negatively correlated. (6) The decrease in altostratus clouds is associated with the weakening of the Arctic front due to Arctic warming, while increased water vapor transport into the Arctic and higher atmospheric instability lead to more cumulus and altocumulus clouds.
Attribution of Biases of Interhemispheric Temperature Contrast in CMIP6 Models
Shiyan ZHANG, Yongyun HU, Jiankai ZHANG, Yan XIA
2024, 41(2): 325-340. doi: 10.1007/s00376-023-3002-0
Abstract:
One of the basic characteristics of Earth’s modern climate is that the Northern Hemisphere (NH) is climatologically warmer than the Southern Hemisphere (SH). Here, model performances of this basic state are examined using simulation results from 26 CMIP6 models. Results show that the CMIP6 models underestimate the contrast in interhemispheric surface temperatures on average (0.8 K for CMIP6 mean versus 1.4 K for reanalysis data mean), and that there is a large intermodel spread, ranging from −0.7 K to 2.3 K. A box model energy budget analysis shows that the contrast in interhemispheric shortwave absorption at the top of the atmosphere, the contrast in interhemispheric greenhouse trapping, and the cross-equatorial northward ocean heat transport, are all underestimated in the multimodel mean. By examining the intermodel spread, we find intermodel biases can be tracked back to biases in midlatitude shortwave cloud forcing in AGCMs. Models with a weaker interhemispheric temperature contrast underestimate the shortwave cloud reflection in the SH but overestimate the shortwave cloud reflection in the NH, which are respectively due to underestimation of the cloud fraction over the SH extratropical ocean and overestimation of the cloud liquid water content over the NH extratropical continents. Models that underestimate the interhemispheric temperature contrast exhibit larger double ITCZ biases, characterized by excessive precipitation in the SH tropics. Although this intermodel spread does not account for the multimodel ensemble mean biases, it highlights that improving cloud simulation in AGCMs is essential for simulating the climate realistically in coupled models.
Circulation Pattern Controls of Summer Temperature Anomalies in Southern Africa
Chibuike Chiedozie IBEBUCHI, Cameron C. LEE
2024, 41(2): 341-354. doi: 10.1007/s00376-023-2392-3
Abstract:
This study investigates the relationship between circulation patterns and austral summer temperature anomalies in southern Africa. The results show that the formation of continental lows tends to increase the thickness of the lower atmosphere. Further, the distinct variabilities of high and low pressure under the circulation types, influence air mass advection from the adjacent oceans, as well as atmospheric stability over land. Stronger anticyclonic circulation at the western branch of the Mascarene high-pressure system enhances the low-level cold air advection by southeast winds, decreases the thickness, and lowers the temperature over a majority of the land in southern Africa. Conversely, a weaker Mascarene High, coupled with enhanced cyclonic activity in the southwest Indian Ocean increases low-level warm air advection and increases temperature anomalies over vast regions in southern Africa. The ridging of a closed South Atlantic anticyclone at the southern coast of southern Africa results in colder temperatures near the tip of southern Africa due to enhanced low-level cold air advection by southeast winds. However, when the ridge is weak and westerly winds dominate the southern coast of southern Africa, these areas experience temperature increases. The northward track of the Southern Hemisphere mid-latitude cyclone, which can be linked to the negative Southern Annular Mode, reduces the temperature in the southwestern part of southern Africa. Also, during the analysis period, El Niño was associated with temperature increases over the central parts of southern Africa; while the positive Indian Ocean dipole was linked to a temperature increase over the northeastern, northwestern, and southwestern parts of southern Africa.
Impact of Sky Conditions on Net Ecosystem Productivity over a “Floating Blanket” Wetland in Southwest China
Yamei SHAO, Huizhi LIU, Qun DU, Yang LIU, Jihua SUN, Yaohui LI, Jinlian LI
2024, 41(2): 355-368. doi: 10.1007/s00376-023-3013-x
Abstract:
Based on eddy covariance (EC) measurements during 2016–20, the effects of sky conditions on the net ecosystem productivity (NEP) over a subtropical “floating blanket” wetland were investigated. Sky conditions were divided into overcast, cloudy, and sunny conditions. On the half-hourly timescale, the daytime NEP responded more rapidly to the changes in the total photosynthetic active radiation (PARt) under overcast and cloudy skies than that under sunny skies. The increase in the apparent quantum yield under overcast and cloudy conditions was the greatest in spring and the least in summer. Additionally, lower atmospheric vapor pressure deficit (VPD) and moderate air temperature were more conducive to enhancing the apparent quantum yield under cloudy skies. On the daily timescale, NEP and the gross primary production (GPP) were higher under cloudy or sunny conditions than those under overcast conditions across seasons. The daily NEP and GPP during the wet season peaked under cloudy skies. The daily ecosystem light use efficiency (LUE) and water use efficiency (WUE) during the wet season also changed with sky conditions and reached their maximum under overcast and cloudy skies, respectively. The diffuse photosynthetic active radiation (PARd) and air temperature were primarily responsible for the variation of daily NEP from half-hourly to monthly timescales, and the direct photosynthetic active radiation (PARb) had a secondary effect on NEP. Under sunny conditions, PARb and air temperature were the dominant factors controlling daily NEP. While daily NEP was mainly controlled by PARd under cloudy and overcast conditions.
News & Views
Record-breaking High-temperature Outlook for 2023: An Assessment Based on the China Global Merged Temperature (CMST) Dataset
Zichen LI, Qingxiang LI, Tianyi CHEN
2024, 41(2): 369-376. doi: 10.1007/s00376-023-3200-9
Abstract:
According to the latest version (version 2.0) of the China global Merged Surface Temperature (CMST2.0) dataset, the global mean surface temperature (GMST) in the first half of 2023 reached its third warmest value since the period of instrumental observation began, being only slightly lower than the values recorded in 2016 and 2020, and historically record-breaking GMST emerged from May to July 2023. Further analysis also indicates that if the surface temperature in the last five months of 2023 approaches the average level of the past five years, the annual average surface temperature anomaly in 2023 of approximately 1.26°C will break the previous highest surface temperature, which was recorded in 2016 of approximately 1.25°C (both values relative to the global pre-industrialization period, i.e., the average value from 1850 to 1900). With El Niño triggering a record-breaking hottest July, record-breaking average annual temperatures will most likely become a reality in 2023.
ERRATUM
Erratum to: Deriving Temporal and Vertical Distributions of Methane in Xianghe Using Ground-based Fourier Transform Infrared and Gas-analyzer Measurements
Denghui JI, Minqiang ZHOU, Pucai WANG, Yang YANG, Ting WANG, Xiaoyu SUN, Christian HERMANS, Bo YAO, Gengchen WANG
2024, 41(2): 377-377. doi: 10.1007s00376-023-3009-6
Abstract: