Advanced Search

2009 Vol. 26, No. 6

Display Method:
CCSC (climate change study in China)
Dust Storm Ensemble Forecast Experiments in East Asia
ZHU Jiang, LIN Caiyan, WANG Zifa
2009, 26(6): 1053-1070. doi: 10.1007/s00376-009-8218-0
Abstract:
The ensemble Kalman filter (EnKF), as a unified approach to both data assimilation and ensemble forecasting problems, is used to investigate the performance of dust storm ensemble forecasting targeting a dust episode in the East Asia during 23--30 May 2007. The errors in the input wind field, dust emission intensity, and dry deposition velocity are among important model uncertainties and are considered in the model error perturbations. These model errors are not assumed to have zero-means. The model error means representing the model bias are estimated as part of the data assimilation process. Observations from a LIDAR network are assimilated to generate the initial ensembles and correct the model biases. The ensemble forecast skills are evaluated against the observations and a benchmark/control forecast, which is a simple model run without assimilation of any observations. Another ensemble forecast experiment is also performed without the model bias correction in order to examine the impact of the bias correction. Results show that the ensemble-mean, as deterministic forecasts have substantial improvement over the control forecasts and correctly captures the major dust arrival and cessation timing at each observation site. However, the forecast skill decreases as the forecast lead time increases. Bias correction further improved the forecasts in down wind areas. The forecasts within 24 hours are most improved and better than those without the bias correction. The examination of the ensemble forecast skills using the Brier scores and the relative operating characteristic curves and areas indicates that the ensemble forecasting system has useful forecast skills.
Retrieval of Aerosol Optical Properties over the Beijing Area Using POLDER/PARASOL Satellite Polarization Measurements
FAN Xuehua, CHEN Hongbin, LIN Longfu, HAN Zhigang, Philippe GOLOUB
2009, 26(6): 1099-1107. doi: 10.1007/s00376-009-8103-x
Abstract:
Aerosol optical properties over Beijing and Xianghe under several typical weather conditions (clear sky, light haze, heavy pollution and dust storm) are derived from POLDER (POLarization and Directionality of the Earths Reflectances)/PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) multi-directional, multi-spectral polarized signals using a more reliable retrieval algorithm as proposed in this paper. The results are compared with those of the operational retrieval algorithm of POLDER/PARASOL group and the ground-based AERONET (AErosol RObotic NETwork)/PHOTONS (PHOtometrie pour le Traitement Operational de Normalisation Satellitaire) measurements. It is shown that the aerosol optical parameters derived from the improved algorithm agree well with AERONET/PHOTONS measurement. The retrieval accuracies of aerosol optical thickness (AOT) and effective radius are 0.06 and 0.05 mu m respectively, which are close to or better than the required accuracies (0.04 for AOT and 0.1 mu m for effective radius) for estimating aerosol direct forcing.
Dependence of the Accuracy of Precipitation and Cloud Simulation on Temporal and Spatial Scales
GAO Shouting, Xiaofan LI
2009, 26(6): 1108-1114. doi: 10.1007/s00376-009-8143-2
Abstract:
Precipitation and associated cloud hydrometeors have large temporal and spatial variability, which makes accurate quantitative precipitation forecasting difficult. Thus, dependence of accurate precipitation and associated cloud simulation on temporal and spatial scales becomes an important issue. We report a cloud-resolving modeling analysis on this issue by comparing the control experiment with experiments perturbed by initial temperature, water vapor, and cloud conditions. The simulation is considered to be accurate only if the root-mean-squared difference between the perturbation experiments and the control experiment is smaller than the standard deviation. The analysis may suggest that accurate precipitation and cloud simulations cannot be obtained on both fine temporal and spatial scales simultaneously, which limits quantitative precipitation forecasting. The accurate simulation of water vapor convergence could lead to accurate precipitation and cloud simulations on daily time scales, but it may not be beneficial to precipitation and cloud simulations on hourly time scales due to the dominance of cloud processes.
Building Morphological Characteristics and Their Effect on the Wind in Beijing
MIAO Shiguang, LI Pingyang, WANG Xiaoyun
2009, 26(6): 1115-1124. doi: 10.1007/s00376-009-7223-7
Abstract:
An urban boundary layer model (UBLM) is improved by incorporating the effect of buildings with a sectional drag coefficient and a height-distributed canopy drag length scale. The improved UBLM is applied to simulate the wind fields over three typical urban blocks over the Beijing area with different height-to-width ratios. For comparisons, the wind fields over the same blocks are simulated by an urban sub-domain scale model resolving the buildings explicitly. The wind fields simulated from the two different methods are in good agreement. Then, two-dimensional building morphological characteristics and urban canopy parameters for Beijing are derived from detailed building height data. Finally, experiements are conducted to investigate the effect of buildings on the wind field in Beijing using the improved UBLM.
Possible Causes for the Persistence Barrier of SSTA in the South China Sea and the Vicinity of Indonesia
ZHAO Xia, LI Jianping
2009, 26(6): 1125-1136. doi: 10.1007/s00376-009-8165-9
Abstract:
The persistence barrier refers to the lag correlation of sea surface temperature anomalies (SSTA) showing a rapid and significant decline in a specific season, regardless of the starting month. This implies that there is a decrease in forecast skill for SSTA in this specific season. This paper investigates the possible causes for the persistence barrier of SSTA in the South China Sea (SCS) and its adjacent regions from the perspective of interannual-interdecadal time scales. The results show that the persistence barrier of SSTA exists not only in the SCS, but also in the vicinity of Indonesia south of the equator. The SCS barrier occurs around October--November, while the occurrence of the barrier in the Indonesia region is around November--December. For these two regions, the occurrence of the persistence barrier is closely associated with the interdecadal variability of SSTA, as well as the interannual variability. The persistence barriers in the SCS and the Indonesia region do not exist alone if the interdecadal variability is not considered, because SSTA have a short memory of less than 4 months, regardless of the starting month. Moreover, the influence of the interdecadal variability of SSTA on the persistence barrier of SSTA in the SCS and the Indonesia region may be associated with SSTA in the Indian Ocean and the western Pacific, but is not closely associated with the Pacific Decadal Oscillation. However, compared with the spring persistence barrier (SPB) of ENSO, the close relationship between the persistence barriers in the SCS and the Indonesia region and the interdecadal variability is unique, since the ENSO SPB is not significantly affected by such variability. In addition, although the persistence barriers in both the SCS and the Indonesia region are quite obvious in strong ENSO cases, the interdecadal variability of SSTA also plays a non-negligible role in this relationship.
Comparison of COSMIC Radio Occultation Refractivity Profiles with Radiosonde Measurements
XU Xiaohua, LUO Jia, SHI Chuang
2009, 26(6): 1137-1145. doi: 10.1007/s00376-009-8066-y
Abstract:
In recent years, radio occultation (RO) technology making use of global positioning system (GPS) signals has been exploited to obtain profiles of atmospheric parameters in the neutral atmosphere. In this paper, the RO refractivity profiles obtained from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) mission are statistically compared with the observations of 38 radiosonde stations provided by the Australian Bureau of Meteorology during the period from 15 July 2006 through 15 July 2007. Different collocation criteria are compared at first, and COSMIC RO soundings that occur within 3 hours and 300 km of radiosonde measurements are used for the final statistical comparison. The overall results show that the agreements between the COSMIC refractivity profiles and the radiosonde soundings from the 38 stations are very good at 0--30 km altitude, with mean absolute relative refractivity deviations of less than 0.5%. Latitudinal comparisons indicate that there are negative refractivity deviations in the lower troposphere over the low latitude and middle latitude regions and large standard deviations exist in the lower troposphere of low latitude regions, which can reach up to ~6%. The comparisons of COSMIC RO refractivity profiles and radiosonde observations for 3 polar stations in four different seasons indicate that the accuracy of GPS RO profiles is better in the Austral summer and autumn than in the Austral spring and winter during the year from September 2006 to August 2007.
The Effect of Surface Friction on the Development of Tropical Cyclones
FANG Juan, TANG Jianping, WU Rongsheng
2009, 26(6): 1146-1156. doi: 10.1007/s00376-009-8020-z
Abstract:
When tropical cyclones (hereafter referred as TCs) are over the ocean, surface friction plays a dual role in the development of TCs. From the viewpoint of water vapor supply, frictional convergence and Ekman pumping provide a source of moisture for organized cumulus convection and is propitious to the spin-up of TCs. On the other hand, surface friction leads to a dissipation of kinetic energy that impedes the intensification of TCs. Which role is dominant in the developing stage of TCs is a controversial issue. In the present work, the influence of surface friction on the growth of TCs is re-examined in detail by conducting two sets of numerical experiments initialized with different cyclonic disturbances. Results indicate that, because of the inherent complexities of TCs, the impact of surface friction on the evolution of TCs can not be simply boiled down to being positive or negative. In the case that a TC starts from a low-level vortex with a warm core, surface friction and the resultant vertical motion makes an important contribution to the convection in the early developing stage of the TC by accelerating the build-up of convective available potential energy (CAPE) and ensuring moisture supply and the lifting of air parcels. This effect is so prominent that it dominates the friction-induced dissipation and makes surface friction a facilitative factor in the spin-up of the TC. However, for a TC formed from a mesoscale convective vortex (MCV) spawned in a long-lasting mesoscale convective system (MCS), the initial fields, and especially the low-level humidity and cold core, enable the prerequisites of convection (i.e., conditional instability, moisture, and lifting), to be easily achieved even without the help of boundary-layer pumping induced by surface friction. Accordingly, the reliance of the development of TCs on surface friction is not as heavy as that derived from a low-level vortex. The positive effect of surface friction on the development of TCs realized through facilitating favorable conditions for convection is nearly cancelled out by the friction-induced dissipation. However, as SST is enhanced in the latter case, the situation may be changed, and different development speeds may emerge between model TCs with and without surface friction considered. In short, owing to the fact that TC development is a complicated process affected by many factors such as initial perturbations, SST, etc., the importance of surface friction to the intensification of TCs may vary enormously from case to case.
An Analysis of the Difference between the Multiple Linear Regression Approach and the Multimodel Ensemble Mean
KE Zongjian, DONG Wenjie, ZHANG Peiqun, WANG Jin, ZHAO Tianbao
2009, 26(6): 1157-1168. doi: 10.1007/s00376-009-8024-8
Abstract:
An investigation of the difference in seasonal precipitation forecast skills between the multiple linear regression (MLR) ensemble and the simple multimodel ensemble mean (EM) was based on the forecast quality of individual models. The possible causes of difference in previous studies were analyzed. In order to make the simulation capability of studied regions relatively uniform, three regions with different temporal correlation coefficients were chosen for this study. Results show the causes resulting in the incapability of the MLR approach vary among different regions. In the Nino3.4 region, strong co-linearity within individual models is generally the main reason. However, in the high latitude region, no significant co-linearity can be found in individual models, but the abilities of single models are so poor that it makes the MLR approach inappropriate for superensemble forecasts in this region. In addition, it is important to note that the use of various score measurements could result in some discrepancies when we compare the results derived from different multimodel ensemble approaches.
Correlation Analysis of Persistent Heavy Rainfall Events in the Vicinity of the Yangtze River Valley and Global Outgoing Longwave Radiation in the Preceding Month
TANG Yanbing, ZHAO Lu, GAO Kun
2009, 26(6): 1169-1180. doi: 10.1007/s00376-009-8006-x
Abstract:
Based on the National Oceanic and Atmospheric Administration (NOAA) daily satellite dataset of global outgoing longwave radiation (OLR) for the period of 1974--2004 and the NCEP-NCAR reanalysis for 1971--2004, the linkage between persistent heavy rainfall (PHR) events in the vicinity of the Yangtze River valley and global OLR leading up to those events (with 1- to 30-day lag) was investigated. The results reveal that there is a significant connection between the initiation of PHR events over the study area and anomalous convective activity over the tropical Indian Ocean, maritime continent, and tropical western Pacific Ocean. During the 30-day period prior to the onset of PHR events, the major significantly anomalous convective centers have an apparent dipole structure, always with enhanced convection in the west and suppressed convection in the east. This dipole structure continuously shifts eastward with time during the 30-day lead period. The influence of the anomalous convective activity over the tropical oceans on the initiation of PHR events over the study area is achieved via an interaction between tropical and extratropical latitudes. More specifically, anomalous convective activity weakens the Walker circulation cell over the tropical Indian Ocean first. This is followed by a weakening of the Indian summer monsoon background state and the excitation and dispersion of Rossby wave activity over Eurasia. Finally, a major modulation of the large scale background circulation occurs. As a result, the condition of a phase-lock among major large scale circulation features favoring PHR events is established over the study area.
Intelligent Optimization Algorithms to VDA of Models with on/off Parameterizations
FANG Changluan, ZHENG Qin, WU Wenhua, DAI Yi
2009, 26(6): 1181-1197. doi: 10.1007/s00376-009-8084-9
Abstract:
Some variational data assimilation (VDA) problems of time- and space-discrete models with on/off parameterizations can be regarded as non-smooth optimization problems. Same as the sub-gradient type method, intelligent optimization algorithms, which are widely used in engineering optimization, can also be adopted in VDA in virtue of their no requirement of cost functions gradient (or sub-gradient) and their capability of global convergence. Two typical intelligent optimization algorithms, genetic algorithm (GA) and particle swarm optimization (PSO), are introduced to VDA of modified Lorenz equations with on-off parameterizations, then two VDA schemes are proposed, that is, GA based VDA (GA-VDA) and PSO based VDA (PSO-VDA). After revealing the advantage of GA and PSO over conventional adjoint methods in the ability of global searching at the existence of cost functions discontinuity induced by on-off switches, sensitivities of GA-VDA and PSO-VDA to population size, observational noise, model error and observational density are detailedly analyzed. Its shown that, in the context of modified Lorenz equations, with proper population size, GA-VDA and PSO-VDA can effectively estimate the global optimal solution, while PSO-VDA consumes much less computational time than GA-VDA with the same population size, and requires a much lower population size with nearly the same results, both methods are not very sensitive to observation noise and model error, while PSO-VDA shows a better performance with observational noise than GA-VDA. It is encouraging that both methods are not sensitive to observational density, especially PSO-VDA, using which almost the same perfect assimilation results can be obtained with comparatively sparse observations.
Water Vapor, Cloud, and Surface Rainfall Budgets Associated with the Landfall of Typhoon Krosa (2007): A Two-Dimensional Cloud-Resolving Modeling Study
YUE Caijun, SHOU Shaowen, Xiaofan LI
2009, 26(6): 1198-1208. doi: 10.1007/s00376-009-8135-2
Abstract:
Water vapor, cloud, and surface rainfall budgets associated with the landfall of Typhoon Krosa on 6--8 October 2007 are analyzed based on a two-dimensional cloud-resolving model simulation. The model is integrated with imposed zonally-uniform vertical velocity, zonal wind, horizontal temperature, and vapor advection from NCEP/Global Data Assimilation System (GDAS) data. The simulation data that are validated with observations are examined to study physical causes associated with surface rainfall processes during the landfall. The time- and domain-mean analysis shows that when Krosa approached the eastern coast of China on 6 October, the water vapor convergence over land caused a local atmospheric moistening and a net condensation that further produced surface rainfall and an increase of cloud hydrometeor concentration. Meanwhile, latent heating was balanced by advective cooling and a local atmospheric warming. One day later, the enhancement of net condensation led to an increase of surface rainfall and a local atmospheric drying, while the water vapor convergence weakened as a result of the landfall-induced deprivation of water vapor flux. At the same time, the latent heating is mainly compensated the advective cooling. Further weakening of vapor convergence on 8 October enhanced the local atmospheric drying while the net condensation and associated surface rainfall was maintained. The latent heating is balanced by advective cooling and a local atmospheric cooling.
Enhancement of the Summer North Atlantic Oscillation Influence on Northern Hemisphere Air Temperature
YUAN Wei, SUN Jianqi
2009, 26(6): 1209-1214. doi: 10.1007/s00376-009-8148-x
Abstract:
This study investigates the relationship between the summer North Atlantic Oscillation (SNAO) and the simultaneous Northern Hemisphere (NH) land surface air temperature (SAT) by using the Climate Research Unit (CRU) data. The results show that the SNAO is related to NH land SAT, but this linkage has varied on decadal timescales over the last 52 years, with a strong connection appearing after the late 1970s, but a weak connection before. The mechanism governing the relationship between the SNAO and NH land SAT is discussed based on the NCEP/NCAR reanalysis data. The results indicate that such a variable relationship may result from changes of the SNAO mode around the late 1970s. The SNAO pattern was centered mainly over the North Atlantic before the late 1970s, and thus had a weak influence on the NH land SAT. But after the late 1970s, the SNAO pattern shifted eastward and its southern center was enhanced in magnitude and extent, which transported the SNAO signal to the North Atlantic surrounding continents and even to central East Asia via an upper level wave train along the Asian jet.
Changes in Temperature Extremes Based on a 6-Hourly Dataset in China from 1961--2005
HU Yichang, HE Yong, DONG Wenjie
2009, 26(6): 1215-1225. doi: 10.1007/s00376-009-8140-5
Abstract:
Changes in Chinese temperature extremes are presented based on a six-hourly surface air temperature dataset for the period 1961--2005. These temperature series are manually observed at 0200, 0800, 1400, and 2000 Beijing Time (LST), and percentile based extreme indices of these time series are chosen for analysis. Although there is a difference in time among the different time zones across China, as more than 80% of the stations are located in two adjacent time zones, these indices for all the stations are called warm (cold) nights (0200 LST), warm (cold) mornings (0800 LST), warm (cold) days (1400 LST), and warm (cold) evenings (2000 LST), respectively for convenience. The frequency of the annual warm extremes has generally increased, while the frequency of the annual cold extremes has decreased, and significant changes are mainly observed in northern China, the Tibetan Plateau, and the southernmost part of China. Based on the national average, annual warm (cold) nights increase (decrease) at a rate of 5.66 (-5.92) d (10 yr)-1, annual warm (cold) days increase (decrease) at a rate of 3.97 (-2.98) d (10 yr)-1, and the trends for the annual warm (cold) mornings and evenings are 4.35 (-4.96) and 5.95 (-4.35) d (10 yr)-1, respectively. For China as a whole, the increasing rates for the occurrence of seasonal warm extremes are larger in the nighttime (0200, 2000 LST) than these in the daytime (0800, 1400 LST), the maximal increase occurs at 2000 LST except in the summer and the minimal increase occurs at 1400 LST except in autumn; the maximal decrease in the occurrence of seasonal cold extremes occurs at 0200 LST and the minimal decrease occurs at 1400 LST.
Bimodality of the South Asia High Simulated by Coupled Models
ZHOU Ningfang, YU Yongqiang, QIAN Yongfu
2009, 26(6): 1226-1234. doi: 10.1007/s00376-009-7219-3
Abstract:
The observed South Asia High (SAH) center is characterized by two distinctive equilibrium modes during boreal midsummer, namely the center of SAH is located between 82.5o--92.5oE for the Tibetan Plateau mode and between 55o--65oE for the Iranian Plateau mode, respectively. The present study describes the ability of 15 coupled general circulation models (CGCM) used in the Intergovernmental Panel on Climate Changes (IPCC) 4th Assessment Report to reproduce the observed bimodality of the SAH. These models reveal a wide range of skill in simulating this bimodality. Nearly half of the models reproduced the bimodality, while the other half of the models did not simulate well these two modes whereas usually preferring one mode. The models that reproduced the bimodality of the SAH present similar horizontal and vertical circulations as those features from the NCEP reanalysis data. The results from these models identify the warm characteristics of the SAH and indicate that these two modes have different dynamic and thermodynamic properties. Different characteristics of the simulated sensible heat and latent heat related to precipitation partly contribute to the difference in the simulations of the SAH bimodality. The majority of these models that prefer to simulate the Tibetan Plateau mode produce a small sensible heat flux difference between the Iranian Plateau and the Tibetan Plateau, and also generally simulate a very strong false precipitation center over the east of the Tibetan Plateau, which indicates strong latent release and thereby contributes to the preference of the SAH center on the Tibetan Plateau. Whereas, the models that reproduce the bimodality of the SAH tend to simulate large precipitation over the southern Himalayas and no obviously false precipitation is produced over the east of the Tibetan Plateau. In addition, the models resolution may also have important impacts on the simulations of precipitation.
A Multifunctional HTDMA System with a Robust Temperature Control
YE Xingnan, CHEN Tianyi, HU Dawei, YANG Xin, CHEN Jianmin, ZHANG Renyi, Alexei F. KHAKUZIV, WANG Lin
2009, 26(6): 1235-1240. doi: 10.1007/s00376-009-8134-3
Abstract:
The hygroscopicity of atmospheric aerosols significantly influences their size distribution, cloud condensation nuclei ability, atmospheric residence time, and climate forcing. In order to investigate the hygroscopic behavior of aerosol particles and serious haze in China, a Hygroscopic Tandem Differential Mobility Analyzers (HTDMA) system was designed and constructed at Fudan University. It can function as a scanning mobility particle sizing system to measure particle size distribution in the range of 20--1000 nm in diameter, as well as a hygroscopicity analyzer for aerosol particles with diameters between 20--400 nm in the range of 20%--90% RH (relative humidity). It can also measure the effect of uptake of inorganic acids or semi-VOCs on the hygroscopic behavior of aerosols, such as typical inorganic salts in atmospheric dust or their mixtures. The performance tests show that the system measured particle size of the standard polystyrene latex spheres (PSLs) is 197 nm, which is in excellent agreement with the certified diameter D=1996 nm, as well as a standard deviation of the repeated runs SD=8.9x10-4. In addition, the measured hygroscopic growth factors of the model compounds, (NH4)2SO4 and NaNO3, agree with the Kohler theoretical curves. The results indicate that the HTDMA system is an excellent and powerful tool for studying the hygroscopic behavior of submicron aerosols and meets the demand required for laboratory research and fieldwork on atmospheric aerosols in China.
Numerical Study of Flow and Gas Diffusion in the Near-Wake behind an Isolated Building
Mohamed F. YASSIN
2009, 26(6): 1241-1252. doi: 10.1007/s00376-009-8025-7
Abstract:
To assist validation of the experimental data of urban pollution dispersion, the effect of an isolated building on the flow and gaseous diffusion in the wake region have been investigated numerically in the neutrally stratified rough-walled turbulent boundary layer. Numerical studies were carried out using Computational Fluid Dynamics (CFD) models. The CFD models used for the simulation were based on the steady-state Reynolds-Average Navier-Stoke equations (RANS) with - turbulence models; standard - and RNG - models. Inlet conditions and boundary conditions were specified numerically to the best information available for each fluid modeling simulation. A gas pollutant was emitted from a point source within the recirculation cavity behind the building model. The accuracy of these simulations was examined by comparing the predicted results with wind tunnel experimental data. It was confirmed that simulation using the model accurately reproduces the velocity and concentration diffusion fields with a fine-mish resolution in the near wake region. Results indicated that there is a good agreement between the numerical simulation and the wind tunnel experiment for both wind flow and concentration diffusion. The results of this work can help to improve the understanding of mechanisms of and simulation of pollutant transport in an urban environment.
Soil Acidification Stimulates the Emission of Ethylene from Temperate Forest Soils
XU Xingkai, Kazuyuki INUBUSHI
2009, 26(6): 1253-1261. doi: 10.1007/s00376-009-8120-9
Abstract:
Soil acidification via acid precipitation is recognized to have detrimental impacts on forest ecosystems, which is in part associated with the function of ethylene released from the soil. However, the impacts of acidification on the cycling of ethylene in forest soils have not been fully taken into consideration in global change studies. Forest topsoils (0--5 cm) under four temperate forest stands were sampled to study the effects of a pH change on the emissions of ethylene and carbon dioxide from the soils and concentrations of dissolved organic carbon (DOC) released into the soils. Increasing acidification or alkalinization of forest soils could increase concentrations of DOC released into the soils under anoxic and oxic conditions. The ethylene emission from these forest topsoils could significantly increase with a decreasing pH, when the soils were acidified experimentally to a pH4.0, and it increased with an increasing concentration of DOC released into the soils, which was different from the carbon dioxide emission from the soils. Hence, the short-term stimulating responses of ethylene emission to a decreasing pH in such forest soils resulted from the increase in the DOC concentration due to acidification rather than carbon mineralization. The results would promote one to study the effects of soil acidification on the cycling of ethylene under different forest stands, particularly under degraded forest stands with heavy acid depositions.
A Note on Reviving the Goddard Satellite-Based Surface Turbulent Fluxes (GSSTF) Dataset
Chung-Lin SHIE, Long S. CHIU, Robert ADLER, Eric NELKIN, I-I LIN, Pingping XIE, Feng-Chin WANG, R. CHOKNGAMWONG, William OLSON, D. Allen CHU
2009, 26(6): 1071-1080. doi: 10.1007/s00376-009-8138-z
Abstract:
Accurate sea surface flux measurements are crucial for understanding the global water and energy cycles. The oceanic evaporation, which is a major component of the global oceanic fresh water flux, is useful for predicting oceanic circulation and transport. The global Goddard Satellite-based Surface Turbulent Fluxes Version-2 (GSSTF2; July 1987--December 2000) dateset that was officially released in 2001 has been widely used by scientific community for global energy and water cycle research, and regional and short period data analyses. We have recently been funded by NASA to resume processing the GSSTF dataset with an objective of continually producing a uniform dataset of sea surface turbulent fluxes, derived from remote sensing data. The dataset is to be reprocessed and brought up-to-date (GSSTF2b) using improved input datasets such as a recently upgraded NCEP/DOE sea surface temperature reanalysis, and an upgraded surface wind and microwave brightness temperature V6 dataset (Version 6) from the Special Sensor Microwave Imager (SSM/I) produced by Remote Sensing Systems (RSS). A second new product (GSSTF3) is further proposed with a finer temporal (12-h) and spatial (0.25ox0.25o) resolution. GSSTF2b (July 1987--December 2008) and GSSTF3 (July 1999--December 2009) will be released for the research community to use by late 2009 and early 2011, respectively.
New Evidences on the Climatic Causes of the Formation of the Spring Persistent Rains over Southeastern China
WAN Rijin, ZHAO Bingke, WU Guoxiong
2009, 26(6): 1081-1087. doi: 10.1007/s00376-009-7202-z
Abstract:
The spring persistent rains (SPR) over southeastern China (SEC) are a unique synoptic and climatic phenomenon in East Asia. A former study has found that the southwesterly flow which lies on the southeastern flank of the Tibetan Plateau (TP) is one of the deflected westerly flows of the TP, and it is suggested to be the direct climatic cause of SPR. This study found that the southwesterly flow is also highly correlated with the sensible heating of the southeastern TP in interannual variability, in addition to having a high correlation in seasonal variability. These facts suggest that the thermal forcing of the TP is another important climatic cause of SPR. Numerical sensitivity experiments further prove that the mechanical and thermal forcings of the TP are the climatic causes of the formation of the SPR. On the other hand, the Nanling Mountains and Wuyi Mountains (NWM) over southeastern China not only increase the SPR precipitation amount evidently, but also make the SPR rain belt move to the south by blocking the strong southwesterly flow.
Article
Land-Air Interaction over Arid/Semi-arid Areas in China and Its Impact on the East Asian Summer Monsoon. Part I: Calibration of the Land Surface Model (BATS) Using Multicriteria Methods
CHEN Wen, ZHU Deqin, LIU Huizhi, SUN Shufen
2009, 26(6): 1088-1098. doi: 10.1007/s00376-009-8187-3
Abstract:
To improve the land surface simulation in the arid and semi-arid areas of northern China, the observational data from two field experiments in Dunhuang and Tongyu are used to optimize the parameters in the land surface model, BATS, through calibration with the multicriteria method. Sensitivity analysis to the parameters in Dunhuang and Tongyu indicates that different parameters need to be calibrated in two sites with different environmental and climate regimes. Comparison of observed sensible heat flux, latent heat flux, and ground surface temperature with the simulated ones shows the simulations with the optimized parameters have been substantially improved. Especially, the holistic simulations with the calibration of the parameter values are much closer to the observations in the arid region (Dunhuang), and the energy partition with the calibrated parameters can also be simulated well in the semi-arid region (Tongyu). Whole results demonstrate that the parameter calibration of the land surface model is important when the model is to be used to investigate the land-air interaction.