Abdillah, M. R., Y. Kanno, and T. Iwasaki, 2017: Tropical–extra-tropical interactions associated with east Asian cold air outbreaks. Part I: Interannual variability. J. Climate, 30, 2989−3007, https://doi.org/10.1175/JCLI-D-16-0152.1.
Amaya, D. J., S.-P. Xie, A. J. Miller, and M. J. McPhaden, 2015: Seasonality of tropical Pacific decadal trends associated with the 21st century global warming hiatus. J. Geophys. Res., 120, 6782−6798, https://doi.org/10.1002/2015JC010906.
Bueh, C., J. B. Peng, D. W. Lin, and B. M. Chen, 2022: On the two successive supercold waves straddling the end of 2020 and the beginning of 2021. Adv. Atmos. Sci., 39, 591−608, https://doi.org/10.1007/s00376-021-1107-x.
Cai, R. S., H. J. Tan, and H. Kontoyiannis, 2017: Robust surface warming in offshore China seas and its relationship to the east Asian monsoon wind field and ocean forcing on interdecadal time scales. J. Climate, 30, 8987−9005, https://doi.org/10.1175/JCLI-D-16-0016.1.
Chang, E. K. M., and S. Song, 2006: The seasonal cycles in the distribution of precipitation around cyclones in the western north Pacific and Atlantic. J. Atmos. Sci., 63, 815−839, https://doi.org/10.1175/JAS3661.1.
Cheung, H. H. N., W. Zhou, M. Y. T. Leung, C. M. Shun, S. M. Lee, and H. W. Tong, 2016: A strong phase reversal of the Arctic oscillation in midwinter 2015/2016: Role of the stratospheric polar vortex and tropospheric blocking. J. Geophys. Res., 121, 13 443–13 457,
Cheung, P. K. Y., M. Y. T. Leung, and W. Zhou, 2021: Position, magnitude, and size of warm-pool El Niño: Variability, seasonal predictability, and climate impacts. J. Geophys. Res., 126, e2021JD034917, https://doi.org/10.1029/2021JD034917.
Cho, H.-O., S.-W. Son, and D.-S. R. Park, 2018: Springtime extra-tropical cyclones in northeast Asia and their impacts on long-term precipitation trends. International Journal of Climatology, 38, 4043−4050, https://doi.org/10.1002/joc.5543.
Dacre, H. F., S. A. Josey, and A. L. M. Grant, 2020: Extratropical-cyclone-induced sea surface temperature anomalies in the 2013−2014 winter. Weather and Climate Dynamics, 1, 27−44, https://doi.org/10.5194/wcd-1-27-2020.
Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteorol. Climatol., 18, 1016−1022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.
Feng, W. J., M. Y.-T. Leung, D. X. Wang, W. Zhou, and O. Y. W. Zhang, 2022: An extreme drought over South China in 2020/21 concurrent with an unprecedented warm northwest Pacific and La Niña. Adv. Atmos. Sci., 39, 1637−1649, https://doi.org/10.1007/s00376-022-1456-0.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Hu, T., Y. Sun, X. B. Zhang, S.-K. Min, and Y.-H. Kim, 2020: Human influence on frequency of temperature extremes. Environmental Research Letters, 15, 064014, https://doi.org/10.1088/1748-9326/ab8497.
Huang, B., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179−8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Ikram, M., Z. J. Yan, Y. Liu, and W. H. Qu, 2015: Seasonal effects of temperature fluctuations on air quality and respiratory disease: A study in Beijing. Natural Hazards, 79, 833−853, https://doi.org/10.1007/s11069-015-1879-3.
Jian, Y. T., X. X. Lin, W. Zhou, M. Q. Jian, M. Y. T. Leung, and P. K. Y. Cheung, 2020: Analysis of record-high temperature over southeast coastal China in winter 2018/19: The combined effect of mid- to high-latitude circulation systems and SST forcing over the north Atlantic and tropical western Pacific. J. Climate, 33, 8813−8831, https://doi.org/10.1175/JCLI-D-19-0732.1.
Jian, Y. T., M. Y. T. Leung, W. Zhou, M. Q. Jian, and S. Yang, 2021a: Present and future relations between ENSO and winter synoptic temperature variability over the Asian–Pacific–American region simulated by CMIP5/6. J. Climate, 34, 9899−9913, https://doi.org/10.1175/JCLI-D-21-0210.1.
Jian, Y. T., M. Y. T. Leung, W. Zhou, M. Q. Jian, S. Yang, and X. X. Lin, 2021b: Interdecadal shift of the relationship between ENSO and winter synoptic temperature variability over the Asian–Pacific–American region in the 1980s. J. Climate, 5321−5335, https://doi.org/10.1175/JCLI-D-20-0931.1.
Kucharski, F., F. Molteni, and A. Bracco, 2006: Decadal interactions between the western tropical Pacific and the north Atlantic oscillation. Climate Dyn., 26, 79−91, https://doi.org/10.1007/s00382-005-0085-5.
Kucharski, F., F. Molteni, M. P. King, R. Farneti, I.-S. Kang, and L. Feudale, 2013: On the need of intermediate complexity general circulation models: A “SPEEDY” example. Bull. Amer. Meteor. Soc., 94, 25−30, https://doi.org/10.1175/BAMS-D-11-00238.1.
Lee, J., S.-W. Son, H.-O. Cho, J. Kim, D.-H. Cha, J. R. Gyakum, and D. L. Chen, 2020: Extra-tropical cyclones over east Asia: Climatology, seasonal cycle, and long-term trend. Climate Dyn., 54, 1131−1144, https://doi.org/10.1007/s00382-019-05048-w.
Leung, M. Y.-T., and W. Zhou, 2016a: Eddy contributions at multiple timescales to the evolution of persistent anomalous east Asian trough. Climate Dyn., 46, 2287−2303, https://doi.org/10.1007/s00382-015-2702-2.
Leung, M. Y. T., and W. Zhou, 2016b: Direct and indirect ENSO modulation of winter temperature over the Asian–Pacific–American region. Scientific Reports, 6, 36356, https://doi.org/10.1038/srep36356.
Leung, M. Y.-T., H. H. N. Cheung, and W. Zhou, 2015: Energetics and dynamics associated with two typical mobile trough pathways over east Asia in boreal winter. Climate Dyn., 44, 1611−1626, https://doi.org/10.1007/s00382-014-2355-6.
Leung, M. Y. T., W. Zhou, K. Y. Cheung, H. N. Gong, and Y. Zhang, 2019: Enhancement of lower tropospheric winter synoptic temperature variations in Southwest China and the northern Indochina Peninsula after 2010. Climate Dyn., 53, 2281−2294, https://doi.org/10.1007/s00382-019-04841-x.
Leung, M. Y.-T., W. Zhou, D. X. Wang, P. W. Chan, S. M. Lee, and H. W. Tong, 2020: Remote tropical western Indian Ocean forcing on changes in June precipitation in South China and the Indochina Peninsula. J. Climate, 33, 7553−7566, https://doi.org/10.1175/JCLI-D-19-0626.1.
Leung, M. Y.-T., D. X. Wang, W. Zhou, P. K. Y. Cheung, Y. T. Jian, and F. A. Xiao, 2022a: Joint effect of west Pacific warming and the Arctic oscillation on the bidecadal variation and trend of the east Asian trough. J. Climate, 35, 2491−2501, https://doi.org/10.1175/JCLI-D-21-0461.1.
Leung, M. Y.-T., D. X. Wang, W. Zhou, Y. Zhang, and L. Wang, 2022b: Interdecadal variation in available potential energy of stationary eddies in the midlatitude Northern Hemisphere in response to the north Pacific gyre oscillation. Geophys. Res. Lett., 49, e2022GL098297, https://doi.org/10.1029/2022GL098297.
Liang, Z. L., L. L. Zeng, Q. Wang, Q. H. Peng, and D. X. Wang, 2022: Interpretation of interannual variability of the zonal contrasting thermal conditions in the winter South China Sea. Climate Dyn., 58, 1439−1457, https://doi.org/10.1007/s00382-021-05968-6.
Liu, F., Y. Ouyang, B. Wang, J. Yang, J. Ling, and P.-C. Hsu, 2020: Seasonal evolution of the intraseasonal variability of China summer precipitation. Climate Dyn., 54, 4641−4655, https://doi.org/10.1007/s00382-020-05251-0.
Ma, S. M., and C. W. Zhu, 2021: Atmospheric circulation regime causing winter temperature whiplash events in North China. International Journal of Climatology, 41, 917−933, https://doi.org/10.1002/joc.6706.
Molteni, F., 2003: Atmospheric simulations using a GCM with simplified physical parametrizations. I: Model climatology and variability in multi-decadal experiments. Climate Dyn., 20, 175−191, https://doi.org/10.1007/s00382-002-0268-2.
Qian, C., and Coauthors, 2018: Human influence on the record-breaking cold event in January of 2016 in Eastern China. Bull. Amer. Meteor. Soc., 99, S118−S122, https://doi.org/10.1175/BAMS-D-17-0095.1.
Qu, T. D., Y. Du, G. Meyers, A. Ishida, and D. X. Wang, 2005: Connecting the tropical Pacific with Indian Ocean through South China Sea. Geophys. Res. Lett., 32, L24609, https://doi.org/10.1029/2005GL024698.
Schemm, S., and G. Rivière, 2019: On the efficiency of baroclinic eddy growth and how it reduces the north Pacific storm-track intensity in midwinter. J. Climate, 32, 8373−8398, https://doi.org/10.1175/JCLI-D-19-0115.1.
Seager, R., M. Cane, N. Henderson, D.-E. Lee, R. Abernathey, and H. H. Zhang, 2019: Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nature Climate Change, 9, 517−522, https://doi.org/10.1038/s41558-019-0505-x.
Song, L., L. Wang, W. Chen, and Y. Zhang, 2016: Intraseasonal variation of the strength of the east Asian trough and its climatic impacts in boreal winter. J. Climate, 29, 2557−2577, https://doi.org/10.1175/JCLI-D-14-00834.1.
Sun, Q. H., Z. Y. Sun, C. Chen, M. L. Yan, Y. Zhong, Z. H. Huang, L. H. He, and T. T. Li, 2022: Health risks and economic losses from cold spells in China. Science of the Total Environment, 821, 153478, https://doi.org/10.1016/j.scitotenv.2022.153478.
Tan, H. J., R. S. Cai, X. H. Yan, and C. H. Li, 2021: Amplification of winter sea surface temperature response over East China seas to global warming acceleration and slowdown. International Journal of Climatology, 41, 2082−2099, https://doi.org/10.1002/joc.6948.
Tang, Y. L., J. L. Huangfu, R. H. Huang, and W. Chen, 2020: Surface warming reacceleration in offshore China and its interdecadal effects on the East Asia–Pacific climate. Scientific Reports, 10, 14811, https://doi.org/10.1038/s41598-020-71862-6.
Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific—East Asian teleconnection: How does ENSO affect east Asian climate. J. Climate, 13, 1517−1536, https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.
Wang, D. X., Q. Xie, Y. Du, W. Q. Wang, and J. Chen, 2002: The 1997−1998 warm event in the South China Sea. Chinese Science Bulletin, 47, 1221−1227, https://doi.org/10.1007/BF02907614.
Wang, G. M., S. B. Power, and S. McGree, 2016: Unambiguous warming in the western tropical Pacific primarily caused by anthropogenic forcing. International Journal of Climatology, 36, 933−944, https://doi.org/10.1002/joc.4395.
Xu, C. D., X. X. Zhang, L. Wang, Y. K. Zhou, G. X. Xiao, and J. Q. Liao, 2020: Effects of temperature fluctuations on spatial-temporal transmission of hand, foot, and mouth disease. Scientific Reports, 10, 2541, https://doi.org/10.1038/s41598-020-59265-z.
Yang, M. H., C. Y. Li, X. Li, X. Chen, and L. F. Li, 2022: The linkage between midwinter suppression of the north Pacific storm track and atmospheric circulation features in the Northern Hemisphere. Adv. Atmos. Sci., 39, 502−518, https://doi.org/10.1007/s00376-021-1145-4.
Zhang, G., and Coauthors, 2021a: Seasonal predictability of baroclinic wave activity. npj Climate and Atmospheric Science, 4, 50, https://doi.org/10.1038/s41612-021-00209-3.
Zhang, Y. J., Z. C. Yin, H. J. Wang, and S. P. He, 2021b: 2020/21 record-breaking cold waves in east of China enhanced by the ‘warm Arctic-cold siberia’ pattern. Environmental Research Letters, 16, 094040, https://doi.org/10.1088/1748-9326/ac1f46.
Zhang, Y. X., D. Si, Y. H. Ding, D. B. Jiang, Q. Q. Li, and G. F. Wang, 2022: Influence of major stratospheric sudden warming on the unprecedented cold wave in east Asia in January 2021. Adv. Atmos. Sci., 39, 576−590, https://doi.org/10.1007/s00376-022-1318-9.
Zhou, B. Z., and Coauthors, 2011: The great 2008 Chinese ice storm: Its socioeconomic–ecological impact and sustainability lessons learned. Bull. Amer. Meteor. Soc., 92, 47−60, https://doi.org/10.1175/2010BAMS2857.1.
Zhou, W., J. C. L. Chan, W. Chen, J. Ling, J. G. Pinto, and Y. P. Shao, 2009: Synoptic-scale controls of persistent low temperature and icy weather over southern China in January 2008. Mon. Wea. Rev., 137, 3978−3991, https://doi.org/10.1175/2009MWR2952.1.