Bodner, A. S., B. Fox-Kemper, L. P. Van Roekel, J. C. McWilliams, and P. P. Sullivan, 2020: A perturbation approach to understanding the effects of turbulence on frontogenesis. J. Fluid Mech., 883, A25. https://doi.org/10.1017/jfm.2019.804.
Bodner, A. S., B. Fox-Kemper, L. Johnson, L. P. Van Roekel, J. C. McWilliams, P. P. Sullivan, P. S. Hall, and J. H. Dong, 2023: Modifying the mixed layer eddy parameterization to include frontogenesis arrest by boundary layer turbulence. J. Phys. Oceanogr., 53, 323−339, https://doi.org/10.1175/JPO-D-21-0297.1.
Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008a: Mesoscale to submesoscale transition in the California current system. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 29−43, https://doi.org/10.1175/2007JPO3671.1.
Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California current system. Part II: frontal processes. J. Phys. Oceanogr., 38, 44−64, https://doi.org/10.1175/2007JPO36 72.1.
Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008c: Mesoscale to submesoscale transition in the California current system. Part III: energy balance and flux. J. Phys. Oceanogr., 38, 2256−2269, https://doi.org/10.1175/2008JPO3810.1.
Crowe, M. N., and J. R. Taylor, 2018: The evolution of a front in turbulent thermal wind balance. Part 1. Theory. J. Fluid Mech., 850, 179−211, https://doi.org/10.1017/jfm.2018.448.
Crowe, M. N., and J. R. Taylor, 2019: The evolution of a front in turbulent thermal wind balance. Part 2. Numerical simulations. J. Fluid Mech., 880, 326−352, https://doi.org/10.1017/jfm.2019.688.
Dauhajre, D. P., J. C. McWilliams, and Y. Uchiyama, 2017: Submesoscale coherent structures on the continental shelf. J. Phys. Oceanogr., 47, 2949−2976, https://doi.org/10.1175/JPO-D-16-0270.1.
Gula, J., M. J. Molemaker, and J. C. McWilliams, 2014: Submesoscale cold filaments in the Gulf Stream. J. Phys. Oceanogr., 44, 2617−2643, https://doi.org/10.1175/JPO-D-14-0029.1.
Hamlington, P. E., L. P. Van Roekel, B. Fox-Kemper, K. Julien, and G. P. Chini, 2014: Langmuir-submesoscale interactions: descriptive analysis of multiscale frontal spindown simulations. J. Phys. Oceanogr., 44, 2249−2272, https://doi.org/10.1175/JPO-D-13-0139.1.
Haney, S., B. Fox-Kemper, K. Julien, and A. Webb, 2015: Symmetric and geostrophic instabilities in the wave-forced ocean mixed layer. J. Phys. Oceanogr., 45, 3033−3056, https://doi.org/10.1175/JPO-D-15-0044.1.
Hoskins, B. J., 1982: The mathematical theory of frontogenesis. Annual Review of Fluid Mechanics, 14, 131−151, https://doi.org/10.1146/annurev.fl.14.010182.001023.
Hypolite, D., L. Romero, J. C. McWilliams, and D. P. Dauhajre, 2021: Surface gravity wave effects on submesoscale currents in the open ocean. J. Phys. Oceanogr., 51, 3365−3383, https://doi.org/10.1175/JPO-D-20-0306.1.
Kaminski, A. K., and W. D. Smyth, 2019: Stratified shear instability in a field of pre-existing turbulence. J. Fluid Mech., 862, 639−658, https://doi.org/10.1017/jfm.2018.973.
Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2009: Significance of Langmuir circulation in upper ocean mixing: Comparison of observations and simulations. Geophys. Res. Lett., 36, L10603. https://doi.org/10.1029/2009GL037620.
Kukulka, T., A. J. Plueddemann, and P. P. Sullivan, 2013: Inhibited upper ocean restratification in nonequilibrium swell conditions. Geophys. Res. Lett., 40, 3672−3676, https://doi.org/10.1002/grl.50708.
Leibovich, S., 1977: Convective instability of stably stratified water in the ocean. J. Fluid Mech., 82, 561−581, https://doi.org/10.1017/S0022112077000846.
Leibovich, S., 1983: The form and dynamics of Langmuir circulations. Annual Review of Fluid Mechanics, 15, 391−427, https://doi.org/10.1146/annurev.fl.15.010183.002135.
Li, G. J., D. X. Wang, J. Chen, J. L. Yao, L. L. Zeng, Y. Q. Shu, and D. D. Sui, 2015: Contrasting dynamic characteristics of shear turbulence and Langmuir circulation in the surface mixed layer. Acta Oceanologica Sinica, 34 (5), 1−11, https://doi.org/10.1007/s13131-015-0661-4.
Li, M., C. Garrett, and E. Skyllingstad, 2005: A regime diagram for classifying turbulent large eddies in the upper ocean. Deep Sea Research Part I: Oceanographic Research Papers, 52, 259−278, https://doi.org/10.1016/j.dsr.2004.09.004.
Li, M., S. Vagle, and D. M. Farmer, 2009: Large eddy simulations of upper-ocean response to a midlatitude storm and comparison with observations. J. Phys. Oceanogr., 39, 2295−2309, https://doi.org/10.1175/2009JPO4165.1.
Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 1722−1735, https://doi.org/10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.
McWilliams, J. C., 2016: Submesoscale currents in the ocean. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472, 20160117. https://doi.org/10.1098/rspa.2016.0117.
McWilliams, J. C., 2017: Submesoscale surface fronts and filaments: secondary circulation, buoyancy flux, and frontogenesis. J. Fluid Mech., 823, 391−432, https://doi.org/10.1017/jfm.2017.294.
McWilliams, J. C., 2018: Surface wave effects on submesoscale fronts and filaments. J. Fluid Mech., 843, 479−517, https://doi.org/10.1017/jfm.2018.158.
McWilliams, J. C., 2019: A survey of submesoscale currents. Geoscience Letters, 6, 3. https://doi.org/10.1186/s40562-019-0133-3.
McWilliams, J. C., 2021: Oceanic frontogenesis. Annual Review of Marine Science, 13, 227−253, https://doi.org/10.1146/annurev-marine-032320-120725.
McWilliams, J. C., and B. Fox-Kemper, 2013: Oceanic wave-balanced surface fronts and filaments. J. Fluid Mech., 730, 464−490, https://doi.org/10.1017/jfm.2013.348.
McWilliams, J. C., P. P. Sullivan, and C. H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 1−30, https://doi.org/10.1017/S0022112096004375.
McWilliams, J. C., E. Huckle, J. H. Liang, and P. P. Sullivan, 2014: Langmuir turbulence in swell. J. Phys. Oceanogr., 44, 870−890, https://doi.org/10.1175/JPO-D-13-0122.1.
McWilliams, J. C., J. Gula, M. J. Molemaker, L. Renault, and A. F. Shchepetkin, 2015: Filament frontogenesis by boundary layer turbulence. J. Phys. Oceanogr., 45, 1988−2005, https://doi.org/10.1175/JPO-D-14-0211.1.
Moeng, C. H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 2052−2062, https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.
Noh, Y., G. Goh, and S. Raasch, 2010: Examination of the mixed layer deepening process during convection using LES. J. Phys. Oceanogr., 40, 2189−2195, https://doi.org/10.1175/2010JPO4277.1.
Shakespeare, C. J., and J. R. Taylor, 2013: A generalized mathematical model of geostrophic adjustment and frontogenesis: uniform potential vorticity. J. Fluid Mech., 736, 366−413, https://doi.org/10.1017/jfm.2013.526.
Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100 (C5), 8501−8522, https://doi.org/10.1029/94JC03202.
Skyllingstad, E. D., and R. M. Samelson, 2012: Baroclinic frontal instabilities and turbulent mixing in the surface boundary layer. Part I: unforced simulations. J. Phys. Oceanogr., 42, 1701−1716, https://doi.org/10.1175/JPO-D-10-05016.1.
Smith, K. M., P. E. Hamlington, and B. Fox-Kemper, 2016: Effects of submesoscale turbulence on ocean tracers. J. Geophys. Res., 121, 908−933, https://doi.org/10.1002/2015JC01 1089.
Sullivan, P. P., and E. G. Patton, 2011: The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci., 68, 2395−2415, https://doi.org/10.1175/JAS-D-10-05010.1.
Sullivan, P. P., and J. C. McWilliams, 2018: Frontogenesis and frontal arrest of a dense filament in the oceanic surface boundary layer. J. Fluid Mech., 837, 341−380, https://doi.org/10.1017/jfm.2017.833.
Sullivan, P. P., and J. C. McWilliams, 2019: Langmuir turbulence and filament frontogenesis in the oceanic surface boundary layer. J. Fluid Mech., 879, 512−553, https://doi.org/10.1017/jfm.2019.655.
Sullivan, P. P., J. C. McWilliams, and C. H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteorol., 71, 247−276, https://doi.org/10.1007/BF00713741.
Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405−452, https://doi.org/10.1017/S002211200700897X.
Sullivan, P. P., L. Romero, J. C. McWilliams, and W. K. Melville, 2012: Transient evolution of Langmuir turbulence in ocean boundary layers driven by hurricane winds and waves. J. Phys. Oceanogr., 42, 1959−1980, https://doi.org/10.1175/JPO-D-12-025.1.
Suzuki, N., and B. Fox-Kemper, 2016: Understanding stokes forces in the wave-averaged equations. J. Geophys. Res., 121, 3579−3596, https://doi.org/10.1002/2015JC011566.
Suzuki, N., B. Fox-Kemper, P. E. Hamlington, and L. P. Van Roekel, 2016: Surface waves affect frontogenesis. J. Geophys. Res., 121, 3597−3624, https://doi.org/10.1002/2015JC 011563.
Van Roekel, L. P., B. Fox-Kemper, P. P. Sullivan, P. E. Hamlington, and S. R. Haney, 2012: The form and orientation of Langmuir cells for misaligned winds and waves. J. Geophys. Res., 117, C05001. https://doi.org/10.1029/2011JC007516.
Wang, D. L., 2001: Large-eddy simulation of the diurnal cycle of oceanic boundary layer: sensitivity to domain size and spatial resolution. J. Geophys. Res., 106 (C7), 13 959−13 974, https://doi.org/10.1029/2001JC000896.
Wang, D. X., G. J. Li, L. Shen, and Y. Q. Shu, 2022: Influence of Coriolis parameter variation on Langmuir turbulence in the ocean upper mixed layer with large eddy simulation. Adv. Atmos. Sci., 39, 1487−1500, https://doi.org/10.1007/s00376-021-1390-6.
Yuan, J. G., and J. H. Liang, 2021: Wind- and wave-driven ocean surface boundary layer in a frontal zone: roles of submesoscale eddies and Ekman–Stokes Transport. J. Phys. Oceanogr., 51, 2655−2680, https://doi.org/10.1175/JPO-D-20-0270.1.
Zhang, Z. W., and Coauthors, 2023: Submesoscale inverse energy cascade enhances southern ocean eddy heat transport. Nature Communications, 14, 1335. https://doi.org/10.1038/s41467-023-36991-2.