Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 1083−1126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.
Blackmon, M. L., Y. H. Lee, and J. M. Wallace, 1984: Horizontal structure of 500 mb height fluctuations with long, intermediate and short time scales. J. Atmos. Sci., 41, 961−980, https://doi.org/10.1175/1520-0469(1984)041<0961:HSOMHF>2.0.CO;2.
Blackmon, M. L., J. M. Wallace, N. C. Lau, and S. L. Mullen, 1977: An observational study of the northern hemisphere wintertime circulation. J. Atmos. Sci., 34, 1040−1053, https://doi.org/10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2.
Boisvert, L. N., A. A. Petty, and J. C. Stroeve, 2016: The impact of the extreme winter 2015/16 arctic cyclone on the Barents–Kara seas. Mon. Wea. Rev., 144, 4279−4287, https://doi.org/10.1175/MWR-D-16-0234.1.
Cai, M., S. Yang, H. M. Van Den Dool, and V. E. Kousky, 2007: Dynamical implications of the orientation of atmospheric eddies: A local energetics perspective. Tellus A, 59, 127−140, https://doi.org/10.1111/j.1600-0870.2006.00213.x.
Chang, E. K. M., and Y. F. Fu, 2002: Interdecadal variations in Northern Hemisphere winter storm track intensity. J. Climate, 15, 642−658, https://doi.org/10.1175/1520-0442(2002)015<0642:IVINHW>2.0.CO;2.
Fujibe, F., 1989: Short-term precipitation patterns in central Honshu, Japan. Classification with the fuzzy c-means method. J. Meteor. Soc. Japan, 67, 967−983, https://doi.org/10.2151/jmsj1965.67.6_967.
Fujibe, F., 1999: Diurnal variation in the frequency of heavy precipitation in Japan. J. Meteor. Soc. Japan, 77, 1137−1149, https://doi.org/10.2151/jmsj1965.77.6_1137.
Graham, R. M., L. Cohen, A. A. Petty, L. N. Boisvert, A. Rinke, S. R. Hudson, M. Nicolaus, and M. A. Granskog, 2017: Increasing frequency and duration of Arctic winter warming events. Geophys. Res. Lett., 44, 6974−6983, https://doi.org/10.1002/2017GL073395.
Graversen, R. G., T. Mauritsen, M. Tjernström, E. Källén, and G. Svensson, 2008: Vertical structure of recent Arctic warming. Nature, 451, 53−56, https://doi.org/10.1038/nature06502.
Han, Z., and S. L. Li, 2018: Precursor role of winter sea-ice in the Labrador Sea for following-spring precipitation over southeastern North America and western Europe. Adv. Atmos. Sci., 35, 65−74, https://doi.org/10.1007/s00376-017-6291-3.
Han, Z., F. F. Luo, and J. H. Wan, 2016: The observational influence of the North Atlantic SST tripole on the early spring atmospheric circulation. Geophys. Res. Lett., 43, 2998−3003, https://doi.org/10.1002/2016GL068099.
Hanley, J., and R. Caballero, 2012: The role of large-scale atmospheric flow and Rossby wave breaking in the evolution of extreme windstorms over Europe. Geophys. Res. Lett., 39, L21708, https://doi.org/10.1029/2012GL053408.
Harnik, N., and E. K. M. Chang, 2003: Storm track variations as seen in radiosonde observations and reanalysis data. J. Climate, 16, 480−495, https://doi.org/10.1175/1520-0442(2003)016<0480:STVASI>2.0.CO;2.
Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999−2049, https://doi.org/10.1002/qj.3803.
Honda, M., and H. Nakamura, 2001: Interannual seesaw between the Aleutian and Icelandic lows. Part II: Its significance in the interannual variability over the wintertime northern hemisphere. J. Climate, 14, 4512−4529, https://doi.org/10.1175/1520-0442(2001)014<4512:ISBTAA>2.0.CO;2.
Honda, M., H. Nakamura, J. Ukita, I. Kousaka, and K. Takeuchi, 2001: Interannual seesaw between the Aleutian and Icelandic lows. Part I: Seasonal dependence and life cycle. J. Climate, 14, 1029−1042, https://doi.org/10.1175/1520-0442(2001)014<1029:ISBTAA>2.0.CO;2.
Hoskins, B. J., and K. I. Hodges, 2002: New perspectives on the northern hemisphere winter storm tracks. J. Atmos. Sci., 59, 1041−1061, https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2.
Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40, 1595−1612, https://doi.org/10.1175/1520-0469(1983)040<1595:TSPAMF>2.0.CO;2.
Hurrell, J. W., 1995a: Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Science, 269, 676−679, https://doi.org/10.1126/science.269.5224.676.
Hurrell, J. W., 1995b: Transient eddy forcing of the rotational flow during northern winter. J. Atmos. Sci., 52, 2286−2301, https://doi.org/10.1175/1520-0469(1995)052<2286:TEFOTR>2.0.CO;2.
Jin, F. F., 2010: Eddy-induced instability for low-frequency variability. J. Atmos. Sci., 67, 1947−1964, https://doi.org/10.1175/2009JAS3185.1.
Jin, F. F., L. L. Pan, and M. Watanabe, 2006a: Dynamics of synoptic eddy and low-frequency flow interaction. Part I: A linear closure. J. Atmos. Sci., 63, 1677−1694, https://doi.org/10.1175/JAS3715.1.
Jin, F. F., L. L. Pan, and M. Watanabe, 2006b: Dynamics of synoptic eddy and low-frequency flow interaction. Part II: A theory for low-frequency modes. J. Atmos. Sci., 63, 1695−1708, https://doi.org/10.1175/JAS3716.1.
Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437−472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
Kim, B. M., and Coauthors, 2017: Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm. Scientific Reports, 7, 40051, https://doi.org/10.1038/srep40051.
Kug, J. S., and F. F. Jin, 2009: Left-hand rule for synoptic eddy feedback on low-frequency flow. Geophys. Res. Lett., 36, L05709, https://doi.org/10.1029/2008GL036435.
Lau, N. C., 1988: Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45, 2718−2743, https://doi.org/10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2.
Lau, N. C., and E. O. Holopainen, 1984: Transient eddy forcing of the time-mean flow as identified by geopotential tendencies. J. Atmos. Sci., 41, 313−328, https://doi.org/10.1175/1520-0469(1984)041<0313:TEFOTT>2.0.CO;2.
Lau, N. C., and M. J. Nath, 1991: Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J. Atmos. Sci., 48, 2589−2613, https://doi.org/10.1175/1520-0469(1991)048<2589:VOTBAB>2.0.CO;2.
Lee, S. S., J. Y. Lee, B. Wang, K. J. Ha, K. Y. Heo, F. F. Jin, D. M. Straus, and J. Shukla, 2012: Interdecadal changes in the storm track activity over the North Pacific and North Atlantic. Climate Dyn., 39, 313−327, https://doi.org/10.1007/s00382-011-1188-9.
Limpasuvan, V., and D. L. Hartmann, 1999: Eddies and the annular modes of climate variability. Geophys. Res. Lett., 26, 3133−3136, https://doi.org/10.1029/1999GL010478.
Limpasuvan, V., and D. L. Hartmann, 2000: Wave-maintained annular modes of climate variability. J. Climate, 13, 4414−4429, https://doi.org/10.1175/1520-0442(2000)013<4414:WMAMOC>2.0.CO;2.
Liptak, J., and C. Strong, 2014: The winter atmospheric response to sea ice anomalies in the Barents Sea. J. Climate, 27, 914−924, https://doi.org/10.1175/JCLI-D-13-00186.1.
Lorenz, D. J., and D. L. Hartmann, 2001: Eddy-zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 3312−3327, https://doi.org/10.1175/1520-0469(2001)058<3312:EZFFIT>2.0.CO;2.
Lorenz, D. J., and D. L. Hartmann, 2003: Eddy-zonal flow feedback in the Northern Hemisphere winter. J. Climate, 16, 1212−1227, https://doi.org/10.1175/1520-0442(2003)16<1212:EFFITN>2.0.CO;2.
Luo, D. H., Y. N. Diao, and S. B. Feldstein, 2011: The variability of the Atlantic storm track and the North Atlantic oscillation: A link between intraseasonal and interannual variability. J. Atmos. Sci., 68, 577−601, https://doi.org/10.1175/2010JAS3579.1.
Magnusdottir, G., C. Deser, and R. Saravanan, 2004: The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. J. Climate, 17, 857−876, https://doi.org/10.1175/1520-0442(2004)017<0857:TEONAS>2.0.CO;2.
Mirkin, B., 1996: Mathematical Classification and Clustering. Springer, 132−139, https://doi.org/10.1007/978-1-4613-0457-9.
Mo, K. C., X. L. Wang, R. Kistler, M. Kanamitsu, and E. Kalnay, 1995: Impact of satellite data on the CDAS-reanalysis system. Mon. Wea. Rev., 123, 124−139, https://doi.org/10.1175/1520-0493(1995)123<0124:IOSDAT>2.0.CO;2.
Moore, G. W. K., 2016: The December 2015 North Pole warming event and the increasing occurrence of such events. Scientific Reports, 6, 39084, https://doi.org/10.1038/srep39084.
Murakami, M., 1979: Large-scale aspects of deep convective activity over the GATE area. Mon. Wea. Rev., 107, 994−1013, https://doi.org/10.1175/1520-0493(1979)107<0994:LSAODC>2.0.CO;2.
Murray, R. J., and I. Simmonds, 1995: Responses of climate and cyclones to reductions in Arctic winter sea ice. J. Geophys. Res.: Oceans, 100, 4791−4806, https://doi.org/10.1029/94JC02206.
Orlanski, I., 1998: Poleward deflection of storm tracks. J. Atmos. Sci., 55, 2577−2602, https://doi.org/10.1175/1520-0469(1998)055<2577:PDOST>2.0.CO;2.
Overland, J. E., and M. Y. Wang, 2016: Recent extreme Arctic temperatures are due to a split polar vortex. J. Climate, 29, 5609−5616, https://doi.org/10.1175/JCLI-D-16-0320.1.
Peng, S. L., W. A. Robinson, and S. L. Li, 2002: North Atlantic SST forcing of the NAO and relationships with intrinsic hemispheric variability. Geophys. Res. Lett., 29, 117-1−117-4, https://doi.org/10.1029/2001GL014043.
Peng, S. L., W. A. Robinson, and S. L. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16, 1987−2004, https://doi.org/10.1175/1520-0442(2003)016<1987:MFTNRT>2.0.CO;2.
Pinto, J. G., T. Spangehl, U. Ulbrich, and P. Speth, 2005: Sensitivities of a cyclone detection and tracking algorithm: Individual tracks and climatology. Meteor. Z., 14, 823−838, https://doi.org/10.1127/0941-2948/2005/0068.
Rogers, J. C., 1990: Patterns of low-frequency monthly sea level pressure variability (1899-1986) and associated wave cyclone frequencies. J. Climate, 3, 1364−1379, https://doi.org/10.1175/1520-0442(1990)003<1364:POLFMS>2.0.CO;2.
Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334−1337, https://doi.org/10.1038/nature09051.
Serreze, M. C., F. Carse, R. G. Barry, and J. C. Rogers, 1997: Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J. Climate, 10, 453−464, https://doi.org/10.1175/1520-0442(1997)010<0453:ILCACF>2.0.CO;2.
Strong, C., G. Magnusdottir, and H. Stern, 2009: Observed feedback between winter sea ice and the North Atlantic Oscillation. J. Climate, 22, 6021−6032, https://doi.org/10.1175/2009JCLI3100.1.
Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297−1300, https://doi.org/10.1029/98GL00950.
Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere Annular Mode. Science, 293, 85−89, https://doi.org/10.1126/science.1058958.
Trenberth, K. E., 1986: An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen-Palm flux diagnostics. J. Atmos. Sci., 43, 2070−2087, https://doi.org/10.1175/1520-0469(1986)043<2070:AAOTIO>2.0.CO;2.
Wang, C., B. H. Ren, and J. Q. Zheng, 2019: Two impacts of arctic rapid tropospheric daily warming from different warm temperature advection on cold winters over northern hemisphere. Earth and Space Science, 6, 1667−1674, https://doi.org/10.1029/2019EA000688.
Woollings, T., C. Franzke, D. L. R. Hodson, B. Dong, E. A. Barnes, C. C. Raible, and J. G. Pinto, 2015: Contrasting interannual and multidecadal NAO variability. Climate Dyn., 45, 539−556, https://doi.org/10.1007/s00382-014-2237-y.
Zhu, Q. G., J. R. Lin, S. W. Shou, and D. S. Tang, 2000: Principles of Synoptic Meteorology. 3rd ed. China Meteorological Press, 133−143. (in Chinese)