Auligné, T., A. P. McNally, and D. P. Dee, 2007: Adaptive bias correction for satellite data in a numerical weather prediction system. Quart. J. Roy. Meteor. Soc., 133, 631−642, https://doi.org/10.1002/qj.56.
Barker, D., and Coauthors, 2012: The weather research and forecasting model’s community variational/ensemble data assimilation system: WRFDA. Bull. Amer. Meteor. Soc., 93, 831−843, https://doi.org/10.1175/BAMS-D-11-00167.1.
Barker, D. M., W. Huang, Y. R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for mm5: Implementation and initial results. Mon. Wea. Rev., 132, 897−914, https://doi.org/10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.
Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9- Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151−183, https://doi.org/10.2151/jmsj.2016-009.
Buehner, M., J. Morneau, and C. Charette, 2013: Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction. Nonlinear Processes in Geophysics, 20, 669−682, https://doi.org/10.5194/npg-20-669-2013.
Chen, Y. D., X. Xia, J. Z. Min, X.-Y. Huang, and S. R. H. Rizvi, 2016: Balance characteristics of multivariate background error covariance for rainy and dry seasons and their impact on precipitation forecasts of two rainfall events. Meteorol. Atmos. Phys., 128, 579−600, https://doi.org/10.1007/s00703-016-0434-4.
Chen, Y. D., J. Wang, Y. F. Gao, X. M. Chen, H. L. Wang, and X.-Y. Huang, 2018: Refinement of the use of inhomogeneous background error covariance estimated from historical forecast error samples and its impact on short-term regional numerical weather prediction. J. Meteor. Soc. Japan, 96, 429−446, https://doi.org/10.2151/jmsj.2018-048.
Chevallier, F., and G. Kelly, 2002: Model clouds as seen from space: Comparison with geostationary imagery in the 11-μm window channel. Mon. Wea. Rev., 130, 712−722, https://doi.org/10.1175/1520-0493(2002)130<0712:MCASFS>2.0.CO;2.
Chevallier, F., P. Bauer, G. Kelly, C. Jakob, and T. McNally, 2001: Model clouds over oceans as seen from space: Comparison with HIRS/2 and MSU radiances. J. Climate, 14, 4216−4229, https://doi.org/10.1175/1520-0442(2001)014<4216:MCOOAS>2.0.CO;2.
Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 1830−1841, https://doi.org/10.1002/qj.493.
Descombes, G., T. Auligné, F. Vandenberghe, D. Barker, and J. Barré, 2014: Generalized background error covariance matrix model (GEN_BE v2.0). Geoscientific Model Development Discussions, 7, 4291−4352, https://doi.org/10.5194/gmdd-7-4291-2014.
Garcia-Reynoso, A., and M. A. Mora-Ramirez, 2017: Implementation of the unified post processor (UPP) and the model evaluation tools (MET) for WRF-CHEM evaluation performance. Atmósfera, 30, 259−273, https://doi.org/10.20937/atm.2017.30.03.06.
Geer, A. J., and P. Bauer, 2011: Observation errors in all-sky data assimilation. Quart. J. Roy. Meteor. Soc., 137, 2024−2037, https://doi.org/10.1002/qj.830.
Geer, A. J., S. Migliorini, and M. Matricardi, 2019: All-sky assimilation of infrared radiances sensitive to mid- and upper-tropospheric moisture and cloud. Atmospheric Measurement Techniques, 12, 4903−4929, https://doi.org/10.5194/amt-12-4903-2019.
Geer, A. J., and Coauthors, 2017: The growing impact of satellite observations sensitive to humidity, cloud and precipitation. Quart. J. Roy. Meteor. Soc., 143, 3189−3206, https://doi.org/10.1002/qj.3172.
Harnisch, F., M. Weissmann, and Á. Periáñez, 2016: Error model for the assimilation of cloud-affected infrared satellite observations in an ensemble data assimilation system. Quart. J. Roy. Meteor. Soc., 142, 1797−1808, https://doi.org/10.1002/qj.2776.
Honda, T., S. Takino, and T. Miyoshi, 2019: Improving a precipitation forecast by assimilating all-sky himawari-8 satellite radiances: A case of Typhoon Malakas (2016). SOLA, 15, 7−11, https://doi.org/10.2151/sola.2019-002.
Honda, T., S. Kotsuki, G. Y. Lien, Y. Maejima, K. Okamoto, and T. Miyoshi, 2018a: Assimilation of himawari-8 all-sky radiances every 10 minutes: Impact on precipitation and flood risk prediction. J. Geophys. Res., 123, 965−976, https://doi.org/10.1002/2017JD027096.
Honda, T., and Coauthors, 2018b: Assimilating all-sky Himawari-8 satellite infrared radiances: A case of Typhoon Soudelor (2015). Mon. Wea. Rev., 146, 213−229, https://doi.org/10.1175/MWR-D-16-0357.1.
Hong, S.-Y., Y., Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318−2341, https://doi.org/10.1175/MWR3199.1.
Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D: Nonlinear Phenomena, 230, 112−126, https://doi.org/10.1016/j.physd.2006.11.008.
Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational-ensemble data assimilation for the NCEP GFS. Part II: 4DEnVar and hybrid variants. Mon. Wea. Rev., 143, 452−470, https://doi.org/10.1175/MWR-D-13-00350.1.
Köpken, C., G. Kelly, and J.-N. Thépaut, 2004: Assimilation of Meteosat radiance data within the 4D-var system at ECMWF: Assimilation experiments and forecast impact. Quart. J. Roy. Meteor. Soc., 130, 2277−2292, https://doi.org/10.1256/qj.02.230.
Li, J., P. Wang, H. Han, J. L. Li, and J. Zheng, 2016b: On the assimilation of satellite sounder data in cloudy skies in numerical weather prediction models. J. Meteorol. Res., 30, 169−182, https://doi.org/10.1007/s13351-016-5114-2.
Li, X., M. J. Zeng, Y. Wang, W. L. Wang, H. Y. Wu, and H. X. Mei, 2016a: Evaluation of two momentum control variable schemes and their impact on the variational assimilation of radarwind data: Case study of a squall line. Adv. Atmos. Sci., 33, 1143−1157, https://doi.org/10.1007/s00376-016-5255-3.
Liu, C. S., and Q. N. Xiao, 2013: An ensemble-based four-dimensional variational data assimilation scheme. Part III: Antarctic applications with Advanced Research WRF using real data. Mon. Wea. Rev., 141, 2721−2739, https://doi.org/10.1175/MWR-D-12-00130.1.
Liu, Q. H., and F. Z. Weng, 2006: Advanced doubling-adding method for radiative transfer in planetary atmospheres. J. Atmos. Sci., 63, 3459−3465, https://doi.org/10.1175/JAS3808.1.
Liu, Z. Q., C. S. Schwartz, C. Snyder, and S.-Y. Ha, 2012: Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a Limited-area Ensemble Kalman Filter. Mon. Wea. Rev., 140, 4017−4034, https://doi.org/10.1175/MWR-D-12-00083.1.
Lorenc, A. C., N. E. Bowler, A. M. Clayton, S. R. Pring, and D. Fairbairn, 2014: Comparison of hybrid-4DEnVar and Hybrid-4DVar Data assimilation methods for global NWP. Mon. Wea. Rev., 143, 212−229, https://doi.org/10.1175/MWR-D-14-00195.1.
Lu, J. Z., T. Feng, J. Li, Z. L. Cai, X. J. Xu, L. Li, and J. L. Li, 2019: Impact of assimilating Himawari-8-derived layered precipitable water with varying cumulus and microphysics parameterization schemes on the simulation of Typhoon Hato. J. Geophys. Res., 124, 3050−3071, https://doi.org/10.1029/2018JD029364.
McNally, A. P., J. C. Derber, W.-S. Wu,, and B. B. Katz, 2000: The use of TOVS level-1B radiances in the NCEP SSI analysis system. Quart. J. Roy. Meteor. Soc., 126, 689−724, https://doi.org/10.1002/qj.49712656315.
Minamide, M., and F. Q. Zhang, 2017: Adaptive observation error inflation for assimilating all-sky satellite radiance. Mon. Wea. Rev., 145, 1063−1081, https://doi.org/10.1175/MWR-D-16-0257.1.
Minamide, M., and F. Q. Zhang, 2018: Assimilation of all-sky infrared radiances from Himawari-8 and impacts of moisture and hydrometer initialization on convection-permitting tropical cyclone prediction. Mon. Wea. Rev., 146, 3241−3258, https://doi.org/10.1175/MWR-D-17-0367.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663−16 682, https://doi.org/10.1029/97JD00237.
Okamoto, K., 2017: Evaluation of IR radiance simulation for all-sky assimilation of himawari-8/AHI in a mesoscale NWP system. Quart. J. Roy. Meteor. Soc., 143, 1517−1527, https://doi.org/10.1002/qj.3022.
Okamoto, K., Y. Sawada, and M. Kunii, 2019: Comparison of assimilating all-sky and clear-sky infrared radiances from Himawari-8 in a mesoscale system. Quart. J. Roy. Meteor. Soc., 145, 745−766, https://doi.org/10.1002/qj.3463.
Otkin, J. A., R. Potthast, and A. S. Lawless, 2018: Nonlinear bias correction for satellite data assimilation using Taylor series polynomials. Mon. Wea. Rev., 146, 263−285, https://doi.org/10.1175/MWR-D-17-0171.1.
Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center's spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747−1763, https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.
Qin, Z. K., X. L. Zou, and F. Z. Weng, 2013: Evaluating added benefits of assimilating goes imager radiance data in GSI for coastal QPFs. Mon. Wea. Rev., 141, 75−92, https://doi.org/10.1175/MWR-D-12-00079.1.
Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78−97, https://doi.org/10.1175/2007MWR2123.1.
Sawada, Y., K. Okamoto, M. Kunii, and T. Miyoshi, 2019: Assimilating every-10-minute himawari-8 infrared radiances to improve convective predictability. J. Geophys. Res., 124, 2546−2561, https://doi.org/10.1029/2018JD029643.
Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to meteosat second generation (MSG). Bull. Amer. Meteor. Soc., 83, 977−992, https://doi.org/10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2.
Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and A. S. Bachmeier, 2005: Introducing the next-generation advanced baseline imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 1079−1096, https://doi.org/10.1175/BAMS-86-8-1079.
Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair, 2017: A closer look at the ABI on the GOES-R series. Bull. Amer. Meteor. Soc., 98, 681−698, https://doi.org/10.1175/BAMS-D-15-00230.1.
Shen, F. F., and J. Z. Min, 2015: Assimilating AMSU‐a radiance data with the WRF hybrid En3DVAR system for track predictions of Typhoon Megi (2010). Adv. Atmos. Sci., 32, 1231−1243, https://doi.org/10.1007/s00376-014-4239-4.
Shen, F. F., D. M. Xu, and J. Z. Min, 2019: Effect of momentum control variables on assimilating radar observations for the analysis and forecast for Typhoon Chanthu (2010). Atmospheric Research, 230, 104622, https://doi.org/10.1016/j.atmosres.2019.104622.
Stengel, M., P. Undén, M. Lindskog, P. Dahlgren, N. Gustafsson, and R. Bennartz, 2009: Assimilation of SEVIRI infrared radiances with HIRLAM 4D-Var. Quart. J. Roy. Meteor. Soc., 135, 2100−2109, https://doi.org/10.1002/qj.501.
Sun, J. Z., H. L. Wang, W. X. Tong, Y. Zhang, C.-Y., Lin, and D. M. Xu, 2016: Comparison of the impacts of momentum control variables on high-resolution variational data assimilation and precipitation forecasting. Mon. Wea. Rev., 144, 149−169, https://doi.org/10.1175/MWR-D-14-00205.1.
Tewari, M., and Coauthors, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. In: Paper 14.2A, 20th conference on Weather Analysis and Forecasting/16th conference on numerical weather prediction, Vol 1115, pp 6.
Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519−542, https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.
Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 1779−1800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.
Wang, P., J. Li, B. Lu, T. J. Schmit, J. Z. Lu, Y.-K. Lee, J. L. Li, and Z. Q. Liu, 2018a: Impact of moisture information from advanced Himawari imager measurements on heavy precipitation forecasts in a regional NWP model. J. Geophys. Res., 123, 6022−6038, https://doi.org/10.1029/2017JD028012.
Wang, Y. B., Z. Q. Liu, S. Yang, J. Z. Min, L. Q. Chen, Y. D. Chen, and T. Zhang, 2018b: Added value of assimilating himawari-8 AHI water vapor radiances on analyses and forecasts for “7.19” severe storm over North China. J. Geophys. Res., 123, 3374−3394, https://doi.org/10.1002/2017JD027697.
Wu, Y. L., Z. Q. Liu, and D. Q. Li, 2020: Improving forecasts of a record-breaking rainstorm in Guangzhou by assimilating every 10-min AHI radiances with WRF 4DVAR. Atmospheric Research, 239, 104912, https://doi.org/10.1016/j.atmosres.2020.104912.
Xu, D. M., Z. Q. Liu, X.-Y. Huang, J. Z. Min, and H. L. Wang, 2013: Impact of assimilating IASI radiance observations on forecasts of two tropical cyclones. Meteorol. Atmos. Phys., 122, 1−18, https://doi.org/10.1007/s00703-013-0276-2.
Xu, D. M., J. Z. Min, F. F. Shen, J. M. Ban, and P. Chen, 2016: Assimilation of MWHS radiance data from the FY-3B satellite with the WRF Hybrid-3DVAR system for the forecasting of binary typhoons. Journal of Advances in Modeling Earth Systems, 8, 1014−1028, https://doi.org/10.1002/2016MS000674.
Yang, C., Z. Q. Liu, F. Gao, P. P. Childs, and J. Z. Min, 2017a: Impact of assimilating GOES imager clear-sky radiance with a rapid refresh assimilation system for convection-permitting forecast over Mexico. J. Geophys. Res., 122, 5472−5490, https://doi.org/10.1002/2016JD026436.
Yang, J., Z. Q. Zhang, C. Y. Wei, F. Lu, and Q. Guo, 2017b: Introducing the new generation of Chinese geostationary weather satellites, fengyun-4. Bull. Amer. Meteor. Soc., 98, 1637−1658, https://doi.org/10.1175/BAMS-D-16-0065.1.
Zhang, Y. J., F. Q. Zhang, and D. J. Stensrud, 2018: Assimilating all-sky infrared radiances from GOES-16 ABI using an Ensemble Kalman filter for convection-allowing severe thunderstorms prediction. Mon. Wea. Rev., 146, 3363−3381, https://doi.org/10.1175/MWR-D-18-0062.1.
Zhuge, X., and X. Zou, 2016: Test of a modified infrared-only ABI cloud mask algorithm for ahi radiance observations. J. Appl. Meteorol. Climatol., 55, 2529−2546, https://doi.org/10.1175/JAMC-D-16-0254.1.
Zou, X. L., Z. K. Qin, and F. Z. Weng, 2011: Improved coastal precipitation forecasts with direct assimilation of GOES-11/12 imager radiances. Mon. Wea. Rev., 139, 3711−3729, https://doi.org/10.1175/MWR-D-10-05040.1.