Bao, Y., and S. H. Lyu, 2009: Improvement of surface albedo parameterization within a regional climate model (regcm3). Hydrol. Earth Syst. Sci., 6, 1651−1676.
Barnett, T. P., L. Dumenil, U. Schlese, and E. Roeckner, 1988: The effect of Eurasian snow cover on global climate. Science, 239, 504−507, https://doi.org/10.1126/science.239.4839.504.
Bloch, M. R., 1964: Dust-induced albedo changes of polar ice sheets and glacierization. J. Glaciol., 5, 241−244, https://doi.org/10.1017/S0022143000028823.
Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks and the climate benefits of forests. Science, 320, 1444−1449, https://doi.org/10.1126/science.1155121.
Bounoua, L., R. DeFries, G. J. Collatz, P. Sellers, and H. Khan, 2002: Effects of land cover conversion on surface climate. Climatic Change, 52, 29−64, https://doi.org/10.1023/A:1013051420309.
Brock, B. W., I. C. Willis, and M. J. Sharp, 2000: Measurement and parameterization of albedo variations at Haut Glacier d’Arolla, Switzerland. J. Glaciol., 46, 675−688, https://doi.org/10.3189/172756500781832675.
Campra, P., M. Garcia, Y. Canton, and A. Palacios-Orueta, 2008: Surface temperature cooling trends and negative radiative forcing due to land use change toward greenhouse farming in southeastern Spain. J. Geophys. Res., 113, D18109, https://doi.org/10.1029/2008JD009912.
Carlson, T. N., and D. A. Ripley, 1997: On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ., 62, 241−252, https://doi.org/10.1016/S0034-4257(97)00104-1.
Charney, J., W. J. Quirk, S. H. Chow, and J. Kornfield, 1977: A comparative study of the effects of albedo change on drought in semi-arid regions. J. Atmos. Sci., 34, 1366−1385, https://doi.org/10.1175/1520-0469(1977)034<1366:ACSOTE>2.0.CO;2.
Charney, J. G., 1975: Dynamics of deserts and drought in the Sahel. Quart. J. Roy. Meteor. Soc., 101, 193−202, https://doi.org/10.1002/qj.49710142802.
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev., 129, 569−585.
Chen, L., and O. W. Frauenfeld, 2014: Surface air temperature changes over the twentieth and twenty-first centuries in china simulated by 20 CMIP5 models. J. Clim., 27, 3920−3937, https://doi.org/10.1175/JCLI-D-13-00465.1.
Chen, X. L., Y. M. Liu, and G. X. Wu, 2017: Understanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan Plateau. Adv. Atmos. Sci., 34, 1447−1460, https://doi.org/10.1007/s00376-017-6326-9.
Dai, Y. J., X. B. Zeng, R. E. Dickinson, I. Baker, G. B. Bonan, M. G. Bosilovich, A. S. Denning, P. A. Dirmeyer, P. R. Houser, G. Y. Niu, K. W. Oleson, C. A. Schlosser, and Z. L. Yang, 2003: The Common Land Model. Bull. Amer. Meteor. Soc., 84, 1013−1023, https://doi.org/10.1175/BAMS-84-8-1013.
De Meij, A., and J. F. Vinuesa, 2014: Impact of SRTM and Corine Land Cover data on meteorological parameters using WRF. Atmos. Res., 143, 351−370, https://doi.org/10.1016/j.atmosres.2014.03.004.
Dickinson, R. E., A. Henderson-Sellers, P. J. Kennedy, and M. F. Wilson, 1986: Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Technical Note 275+STR, NCAR, Boulder, Colorado.
Dong, G. Q., and Z. Z. Li, 1994: An improved method for accurate calculation of albedos of inhomogeneous land surfaces. Int. J. Remote Sens., 15, 531−536, https://doi.org/10.1080/01431169408954094.
Essery, R., and J. Pomeroy, 2004: Vegetation and topographic control of wind-blown snow distributions in distributed and aggregated simulations for an Arctic tundra basin. J. Hydrometeorol., 5, 735−744, https://doi.org/10.1175/1525-7541(2004)005<0735:VATCOW>2.0.CO;2.
Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, D22.
Fishman, B., H. Taha, and H. Akbari, 1994: Mesoscale Cooling Effects of High-Albedo Surfaces: Analysis of Meteorological Data from White Sands National Monument and White Sands Missile Range. Lawrence Berkeley Laboratory report No. 35056, Heat Island Group Reports, Lawrence Berkeley National Laboratory, Berkeley, CA.
Frauenfeld, O. W., T. J. Zhang, and M. C. Serreze, 2005: Climate change and variability using European Centre for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau. J. Geophys. Res., 110, D02101.
Gao, J., V. Masson-Delmotte, T. D. Yao, L. D. Tian, C. Risi, and G. Hoffmann, 2011: Precipitation water stable isotopes in the South Tibetan plateau: Observations and modeling. J. Clim., 24, 3161−3178, https://doi.org/10.1175/2010JCLI3736.1.
Gao, Y. H., F. Chen, M. Barlage, W. Liu, G. D. Cheng, X. Li, Y. Yu, Y. H. Ran, H. Y. Li, H. C. Peng, and M. G. Ma, 2008: Enhancement of land surface information and its impact on atmospheric modeling in the Heihe River Basin, northwest China. J. Geophys. Res., 113, 2739−2740.
Gardner, A. S., and M. J. Sharp, 2010: A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization. J. Geophys. Res., 115, F01009.
Green, R. O., J. Dozier, D. Roberts, and T. Painter, 2002: Spectral snow-reflectance models for grain-size and liquid-water fraction in melting snow for the solar-reflected spectrum. Ann. Glaciol., 34, 71−73, https://doi.org/10.3189/172756402781817987.
Greuell, W., 2000: Melt-water accumulation on the surface of the Greenland Ice Sheet: Effect on albedo and mass balance. Geogr. Ann., 82, 489−498, https://doi.org/10.1111/j.0435-3676.2000.00136.x.
Gutman, G., and A. Ignatov, 1998: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19, 1533−1543, https://doi.org/10.1080/014311698215333.
Hansen, J., and L. Nazarenko, 2004: Soot climate forcing via snow and ice albedos. PNAS, 101, 423−428, https://doi.org/10.1073/pnas.2237157100.
Hong, S. B., V. Lakshmi, E. E. Small, F. Chen, M. Tewari, and K. W. Manning, 2009: Effects of vegetation and soil moisture on the simulated land surface processes from the coupled WRF/Noah model. J. Geophys. Res., 114, D18.
Hu, Y. H., M. T. Hou, C. L. Zhao, X. J. Zhen, L. Yao, and Y. H. Xu, 2019: Human-induced changes of surface albedo in Northern China from 1992−2012. Int. J. Appl. Earth Obs., 79, 184−191, https://doi.org/10.1016/j.jag.2019.03.018.
Hua, W. J., H. S. Chen, and S. L. Sun, 2014: Uncertainty in land surface temperature simulation over China by CMIP3/CMIP5 models. Theor. Appl. Climatol., 117, 463−474, https://doi.org/10.1007/s00704-013-1020-z.
Ji, Z. M., and S. C. Kang, 2013: Double-nested dynamical downscaling experiments over the Tibetan Plateau and their projection of climate change under two RCP scenarios. J. Atmos. Sci., 70, 1278−1290, https://doi.org/10.1175/JAS-D-12-0155.1.
Jiang, Z. Y., A. R. Huete, J. Chen, Y. H. Chen, J. Li, G. J. Yan, and X. Y. Zhang, 2006: Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ., 101, 366−378, https://doi.org/10.1016/j.rse.2006.01.003.
Jin, J. M., N. L. Miller, and N. Schlegel, 2010: Sensitivity study of four land surface schemes in the WRF mode. Adv. Meteorol., 2010, 1−11.
Jonsell, U., R. Hock, and B. Holmgren, 2003: Spatial and temporal variations in albedo on Storglaciaren, Sweden. J. Glaciol., 49, 59−68, https://doi.org/10.3189/172756503781830980.
Klok, E. J. L., W. Greuell, and J. Oerlemans, 2003: Temporal and spatial variation of the surface albedo of Morteratschgletscher, Switzerland, as derived from 12 Landsat images. J. Glaciol., 49, 491−502, https://doi.org/10.3189/172756503781830395.
Kumar, P., B. K. Bhattacharya, and P. K. Pal, 2013: Impact of vegetation fraction from Indian geostationary satellite on short-range weather forecast. Agr. For. Meteorol., 168, 82−92, https://doi.org/10.1016/j.agrformet.2012.08.009.
Li, H. Q., H. L. Zhang, A. Mamtimin, S. Y. Fan, and C. X. Ju, 2020: A New Land-Use Dataset for the Weather Research and Forecasting (WRF) Model. Atmosphere, 11, 350, https://doi.org/10.3390/atmos11040350.
Li, S. G., Y. Harazono, T. Oikawa, H. L. Zhao, Z. Y. He, and X. L. Chang, 2000: Grassland desertification by grazing and the resulting micrometeorological changes in InnerMongolia. Agric. For. Meteorol., 102, 125−137, https://doi.org/10.1016/S0168-1923(00)00101-5.
Li, W. K., W. D. Guo, B. Qiu, Y. K. Xue, P. C. Hsu, and J. F. Wei, 2018: Influence of Tibetan Plateau snow cover on East Asian atmospheric circulation at medium-range time scales. Nat. Commun., 9, 4243, https://doi.org/10.1038/s41467-018-06762-5.
Li, Z. Q., and L. Garand, 1994: Estimation of surface albedo from space: A parameterization for global application. J. Geophys. Res., 99, 8335−8350, https://doi.org/10.1029/94JD00225.
Liang, S., 2000: Narrowband to Broadband conversions of land surface albedo: I. Algorithms. Remote Sens. Environ., 76, 213−238.
Liang, S. L., H. L. Fang, M. Z. Chen, C. J. Shuey, C. Walthall, C. Daughtry, J. Morisette, C. Schaaf, and A. Strahler, 2002: Validating MODIS land surface reflectance and albedo products: Methods and preliminary results. Remote Sens. Environ., 83, 149−162, https://doi.org/10.1016/S0034-4257(02)00092-5.
Liang, S. L., J. Stroeve, and J. E. Box, 2005: Mapping daily snow/ice shortwave broadband albedo from Moderate Resolution Imaging Spectroradiometer (MODIS): The improved direct retrieval algorithm and validation with Greenland in situ measurement. J. Geophys. Res., 110, D10.
Liu, L., C. Z. Lin, Y. Q. Bai, and D. X. He, 2020: Assessing the Effects of Microphysical Scheme on Convective and Stratiform Characteristics in a Mei-Yu Rainfall Combining WRF Simulation and Field Campaign Observations. Adv. Meteorol.,
Liu, L., Y. M. Ma, M. Menenti, X. Z. Zhang, and W. Q. Ma, 2019: Evaluation of WRF modeling in relation to different land surface schemes and initial and boundary conditions: A snow event simulation over the Tibetan Plateau. J. Geophys. Res., 124, 209−226.
Liu, Y., and Z. Qian, 2005: The affection of land and sea thermal difference to climate change in China. China Meteorological Press, Beijing, 1−193.
Livneh, B., Y. L. Xia, K. E. Mitchell, M. B. Ek, and D. P. Lettenmaier, 2010: Noah LSM snow model diagnostics and enhancements. J. Hydrometeorol., 11, 721−738, https://doi.org/10.1175/2009JHM1174.1.
Malik, M. J., R. van der Velde, Z. Vekerdy, and Z. B. Su, 2014: Improving modeled snow albedo estimates during the spring melt season. J. Geophys. Res., 119, 7311−7331, https://doi.org/10.1002/2013JD021344.
Marshall, S. E., and S. G. Warren, 1987: Parameterization of snow albedo for climate models, Large Scale Effects of Seasonal Snow Cover (Proceedings of the Vancouver Symposium, August 1987). IAHS, 166, 43−51.
Marshall, S., R. J. Oglesby, K. Maasch, and G. T. Bates, 1999: Improving climate model representations of snow hydrology. Environ. Modell. Softw., 14, 327−334, https://doi.org/10.1016/S1364-8152(98)00084-X.
Marshall, S., R. J. Oglesby, and A. W. Nolin, 2003: The predictability of winter snow cover over the western United States. J. Clim., 16, 1062−1073, https://doi.org/10.1175/1520-0442(2003)016<1062:TPOWSC>2.0.CO;2.
Matsui, T., V. Lakshmi, and E. E. Small, 2005: The effects of satellite-derived vegetation cover variability on simulated land–atmosphere interactions in the NAMS. J. Clim., 18, 21−40, https://doi.org/10.1175/JCLI3254.1.
Menenti, M., W. G. M. Bastiaanssen, and D. Van Eick, 1989: Determination of surface hemispherical reflectance with Thematic Mapper data. Remote Sens. Environ., 28, 327−337, https://doi.org/10.1016/0034-4257(89)90124-7.
Meng, X. H., and Coauthors, 2018: Simulated cold bias being improved by using MODIS time-varying albedo in the Tibetan Plateau in WRF model. Environ. Res. Lett., 13, 44028, https://doi.org/10.1088/1748-9326/aab44a.
Nair, U. S., D. Ray, J. Wang, S. A. Christopher, T. J. Lyons, R. M. Welch, and R. A. Pielke, 2007: Observational estimates of radiative forcing due to land use change in southwest Australia. J. Geophys. Res., 112, D09117, https://doi.org/10.1029/2006JD007505.
Oerlemans, J., and W. H. Knap, 1998: A 1 year record of global radiation and albedo in the ablation zone of Morteratschgletscher, Switzerland. J. Glaciol., 44, 231−238, https://doi.org/10.1017/S0022143000002574.
Painter, T. H., J. Dozier, D. A. Roberts, R. E. Davis, and R. O. Green, 2003: Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data. Remote Sens. Environ., 85, 64−77, https://doi.org/10.1016/S0034-4257(02)00187-6.
Park, S., and S. K. Park, 2016: Parameterization of the snow-covered surface albedo in the Noah-MP version 1.0 by implementing vegetation effects. Geosci. Model Dev., 9, 1073−1085, https://doi.org/10.5194/gmd-9-1073-2016.
Qiu, J., 2008: The third pole. Nature, 454, 393−396, https://doi.org/10.1038/454393a.
Rai, A., S. K. Saha, and K. Sujith, 2019: Implementation of snow albedo schemes of varying complexity and their performances in offline Noah and Noah coupled with NCEP CFSv2. Clim. Dynam., 53, 1261−1276, https://doi.org/10.1007/s00382-019-04632-4.
Schicker, I., D. A. Arias, and P. Seibert, 2016: Influences of updated land-use datasets on WRF simulations for two Austrian regions. Meteorol. Atmos. Phys., 128, 279−301, https://doi.org/10.1007/s00703-015-0416-y.
Sellers, P. J., D. A. Randall, G. J. Collatz, J. A. Berry, C. B. Field, D. A. Dazlich, C. Zhang, G. D. Collelo, and L. Bounoua, 1996: A revised land surface parameterization (SiB2) for atmospheric GCM. Part I: Model formulation. J. Clim., 9, 676−705.
Seol, K. H., and S. Y. Hong, 2009: Relationship between the Tibetan Snow in Spring and the East Asian summer monsoon in 2003: a global and regional modeling study. J. Clim., 22, 2095−2110, https://doi.org/10.1175/2008JCLI2496.1.
Sertel, E., A. Robock, and C. Ormeci, 2010: Impacts of land cover data quality on regional climate simulations. Int. J. Climatol., 30, 1942−1953, https://doi.org/10.1002/joc.2036.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN‐475+STR.
Su, F. G., X. L. Duan, D. L. Chen, Z. C. Hao, and C. Lan, 2013: Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J. Clim., 26, 3187−3208, https://doi.org/10.1175/JCLI-D-12-00321.1.
Thiruvengadam, P., J. Indu, and S. Ghosh, 2020: Significance of 4DVAR radar data assimilation in weather research and forecast model-based nowcasting system. J. Geophys. Res., 125, e2019JD031369, https://doi.org/10.1029/2019JD031369.
Wang, A. H., and X. B. Zeng, 2012: Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J. Geophys. Res., 117, D5.
Xiao, Z. X., and A. M. Duan, 2016: Impacts of Tibetan Plateau snow cover on the interannual variability of the East Asian summer monsoon. J. Clim., 29, 8495−8514, https://doi.org/10.1175/JCLI-D-16-0029.1.
Yan, D. D., T. Y. Liu, W. J. Dong, X. H. Liao, S. Q. Luo, K. Wu, X. Zhu, Z. Y. Zheng, and X. H. Wen, 2020: Integrating remote sensing data with WRF model for improved 2-m temperature and humidity simulations in China. Dynam. Atmos. Oceans, 89, 101127, https://doi.org/10.1016/j.dynatmoce.2019.101127.
Yan, Y. C., R. R. Yan, X. Wang, X. L. Xu, D. W. Xu, D. Y. Jin, J. Q. Chen, and X. P. Xin, 2019: Grazing affects snow accumulation and subsequent spring soil water by removing vegetation in a temperate grassland. Sci. Total Environ., 697, 134189, https://doi.org/10.1016/j.scitotenv.2019.134189.
Yang, Q. H., and Coauthors, 2016: Albedo of coastal landfast sea ice in Prydz Bay, Antarctica: Observations and parameterization. Adv. Atmos. Sci., 33, 535−543, https://doi.org/10.1007/s00376-015-5114-7.
Yang, W., T. D. Yao, X. F. Guo, M. L. Zhu, S. H. Li, and D. B. Kattel, 2013: Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. J. Geophys. Res., 118, 9579−9594, https://doi.org/10.1002/jgrd.50760.
Yin, J. f., X. W. Zhan, Y. F. Zheng, C. Hain, M. Ek, J. Wen, L. Fang, and J. C. Liu, 2016: Improving Noah land surface model performance using near real time surface albedo and green vegetation fraction. Agr. For. Meteorol., 218-219, 171-183.
Zhang, M., G. P. Luo, P. D. Maeyer, P. Cai, and A. Kurban, 2017: Improved Atmospheric Modelling of the Oasis-Desert System in Central Asia Using WRF with Actual Satellite Products. Remote Sens., 9, 1273, https://doi.org/10.3390/rs9121273.
Zhang, Y. L., B. Y. Li, and D. Zheng, 2002: A discussion on the boundary and area of the Tibetan Plateau in China. Geogr. Res., 21, 1−8.
Zhang, Y. S., T. Li, and B. Wang, 2004: Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon. J. Clim., 17, 2780−2793, https://doi.org/10.1175/1520-0442(2004)017<2780:DCOTSS>2.0.CO;2.
Zhong, E. F., Q. Li, S. F. Sun, W. Chen, S. F. Chen, and D. Nath, 2017: Improvement of a snow albedo parameterization in the Snow-Atmosphere-Soil Transfer model: evaluation of impacts of aerosol on seasonal snow cover. Adv. Atmos. Sci., 34, 1333−1345, https://doi.org/10.1007/s00376-017-7019-0.