Bae, S. Y., S.-Y. Hong, and W.-K. Tao, 2018: Development of a single-moment cloud microphysics scheme with prognostic hail for the weather research and forecasting (WRF) model. Asia-Pacific Journal of Atmospheric Sciences, 55, 233−245, https://doi.org/10.1007/s13143-018-0066-3.
Chen, J.-P., and T.-C. Tsai, 2016: Triple-moment modal parameterization for the adaptive growth habit of pristine ice crystals. J. Atmos. Sci., 73, 2105−2122, https://doi.org/10.1175/JAS-D-15-0220.1.
Cohard, J.-M., and J.-P. Pinty, 2000: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 1815−1842, https://doi.org/10.1002/qj.49712656613.
Cotton, W. R., G. J. Tripoli, R. M. Rauber, and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 1658−1680, https://doi.org/10.1175/1520-0450(1986)025<1658:NSOTEO>2.0.CO;2.
Deng, W., J.-M. Sun, and H.-C. Lei, 2018: Numerical investigations for the impacts of triple-moment and double-moment condensation schemes on the warm rain formation. Atmos. Ocean. Sci. Lett., 11, 472−480, https://doi.org/10.1080/16742834.2018.1527176.
Harrington, J. Y., M. P. Meyers, R. L. Walko, and W. R. Cotton, 1995: Parameterization of ice crystal conversion processes due to vapor deposition for mesoscale models using double-moment basis functions. Part I: Basic formulation and parcel model results. J. Atmos. Sci., 52, 4344−4366, https://doi.org/10.1175/1520-0469(1995)052<4344:POICCP>2.0.CO;2.
Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. American Meteorological Society, 84 pp.
Khain, A., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H. Krugliak, 2000: Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmospheric Research, 55, 159−224, https://doi.org/10.1016/S0169-8095(00)00064-8.
Khain, A. P., and Coauthors, 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247−322, https://doi.org/10.1002/2014RG000468.
Kong, F. Y., and M. K. Yau, 1997: An explicit approach to microphysics in MC2. Atmos.-Ocean, 35, 257−291, https://doi.org/10.1080/07055900.1997.9649594.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065−1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.
Levkov, L., B. Rockel, H. Kapitza, and E. Raschke, 1992: 3D mesoscale numerical studies of cirrus and stratus clouds by their time and space evolution. Contrib. Atmos. Phys., 65, 35−58.
Liu, Y. G., and P. H. Daum, 2000: Spectral dispersion of cloud droplet size distributions and the parameterization of cloud droplet effective radius. Geophys. Res. Lett., 27, 1903−1906, https://doi.org/10.1029/1999GL011011.
Liu, Y. G., and P. H. Daum, 2002: Indirect warming effect from dispersion forcing. Nature, 419, 580−581, https://doi.org/10.1038/419580a.
Liu, Y. G., and P. H. Daum, 2004: Parameterization of the autoconversion process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61, 1539−1548, https://doi.org/10.1175/1520-0469(2004)061<1539:POTAPI>2.0.CO;2.
Loftus, A. M., W. R. Cotton, and G. G. Carrió, 2014: A triple-moment hail bulk microphysics scheme. Part I: Description and initial evaluation. Atmospheric Research, 149, 35−57, https://doi.org/10.1016/j.atmosres.2014.05.013.
Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051−3064, https://doi.org/10.1175/JAS3534.1.
Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 3065−3081, https://doi.org/10.1175/JAS3535.1.
Milbrandt, J. A., and M. K. Yau, 2006: A multimoment bulk microphysics parameterization. Part III: Control simulation of a hailstorm. J. Atmos. Sci., 63, 3114−3136, https://doi.org/10.1175/JAS3816.1.
Milbrandt, J. A., H. Morrison, D. T. Dawson II, and M. Paukert, 2021: A triple-moment representation of ice in the predicted particle properties (P3) microphysics scheme. J. Atmos. Sci., 78, 439−458, https://doi.org/10.1175/JAS-D-20-0084.1.
Morrison, H., and W. W. Grabowski, 2007: Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J. Atmos. Sci., 64, 2839−2861, https://doi.org/10.1175/JAS3980.
Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 991−1007, https://doi.org/10.1175/2008MWR2556.1.
Naumann, A. K., and A. Seifert, 2016: Evolution of the shape of the raindrop size distribution in simulated shallow cumulus. J. Atmos. Sci., 73, 2279−2297, https://doi.org/10.1175/JAS-D-15-0263.1.
Petters, M. D., J. R. Snider, B. Stevens, G. Vali, I. Faloona, and L. M. Russell, 2006: Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical pacific marine boundary layer. J. Geophys. Res., 111, D02206, https://doi.org/10.1029/2004JD005694.
Rauber, R. M., and Coauthors, 2007: Rain in shallow cumulus over the ocean: The RICO campaign. Bull. Amer. Meteor. Soc., 88, 1912−1928, https://doi.org/10.1175/BAMS-88-12-1912.
Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Pergamon, 293 pp.
Seifert, A., and K. D. Beheng, 2001: A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmospheric Research, 59−60, 265−281,
Sun, J. M., P. A. Ariya, H. G. Leighton, and M. K. Yau, 2012a: Modeling study of ice formation in warm-based precipitating shallow cumulus clouds. J. Atmos. Sci., 69, 3315−3335, https://doi.org/10.1175/JAS-D-11-0344.1.
Sun, J. M., H. Leighton, M. K. Yau, and P. A. Ariya, 2012b: Numerical evidence for cloud droplet nucleation at the cloud-environment interface. Atmospheric Chemistry and Physics, 12, 12 155−12 164,
Tao, W.-K., and J. Simpson, 1993: Goddard cumulus ensemble model. Part I: Model description. Terrestrial, Atmospheric and Oceanic Sciences, 4, 35−75, https://doi.org/10.3319/TAO.1993.4.1.35(A.
Tzivion, S., T. Reisin, and Z. Levin, 1994: Numerical simulation of hygroscopic seeding in a convective cloud. J. Appl. Meteor., 33, 252−267, https://doi.org/10.1175/1520-0450(1994)033<0252:NSOHSI>2.0.CO;2.
Wang, Y. Q., J. M. Sun, and H. C. Lei, 2016: Observational analysis of cloud droplet spectra of shallow maritime cumuli. Journal of PLA University of Science and Technology (Natural Science Edition), 17(5), 480−487, https://doi.org/10.12018/j.issn.1009-3443.20151010002. (in Chinese with English abstract
Xie, X. N., and X. D. Liu, 2011: Effects of spectral dispersion on clouds and precipitation in mesoscale convective systems. J. Geophys. Res., 116, D06202, https://doi.org/10.1029/2010JD014598.
Xie, X. N., X. D. Liu, Y. R. Peng, Y. Wang, Z. G. Yue, and X. Z. Li, 2013: Numerical simulation of clouds and precipitation depending on different relationships between aerosol and cloud droplet spectral dispersion. Tellus B, 65, 19054, https://doi.org/10.3402/tellusb.v65i0.19054.
Xie, X. N., H. Zhang, X. D. Liu, Y. R. Peng, and Y. G. Liu, 2017: Sensitivity study of cloud parameterizations with relative dispersion in CAM5.1: Impacts on aerosol indirect effects. Atmospheric Chemistry and Physics, 17, 5877−5892, https://doi.org/10.5194/acp-17-5877-2017.
Yang, J., and M. K. Yau, 2008: A new triple-moment blowing snow model. Bound.-Layer Meteorol., 126, 137−155, https://doi.org/10.1007/s10546-007-9215-4.
Zhang, J., 2015: The comparison of methods for droplets growth by condensation. M.S. thesis, Lanzhou University, 48 pp. (in Chinese with English abstract)
Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part 1: Model development and preliminary testing. J. Atmos. Sci., 42, 1487−1509, https://doi.org/10.1175/1520-0469(1985)042<1487:ROTAMV>2.0.CO;2.